]> Creatis software - clitk.git/blob - itk/clitkSegmentationUtils.txx
Change Above/Below with Greater/Lower
[clitk.git] / itk / clitkSegmentationUtils.txx
1 /*=========================================================================
2   Program:   vv                     http://www.creatis.insa-lyon.fr/rio/vv
3
4   Authors belong to: 
5   - University of LYON              http://www.universite-lyon.fr/
6   - Léon Bérard cancer center       http://www.centreleonberard.fr
7   - CREATIS CNRS laboratory         http://www.creatis.insa-lyon.fr
8
9   This software is distributed WITHOUT ANY WARRANTY; without even
10   the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
11   PURPOSE.  See the copyright notices for more information.
12
13   It is distributed under dual licence
14
15   - BSD        See included LICENSE.txt file
16   - CeCILL-B   http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html
17   ======================================================================-====*/
18
19 // clitk
20 #include "clitkSetBackgroundImageFilter.h"
21 #include "clitkSliceBySliceRelativePositionFilter.h"
22 #include "clitkCropLikeImageFilter.h"
23 #include "clitkMemoryUsage.h"
24
25 // itk
26 #include <itkConnectedComponentImageFilter.h>
27 #include <itkRelabelComponentImageFilter.h>
28 #include <itkBinaryThresholdImageFilter.h>
29 #include <itkPasteImageFilter.h>
30 #include <itkStatisticsLabelMapFilter.h>
31 #include <itkBinaryBallStructuringElement.h>
32 #include <itkBinaryDilateImageFilter.h>
33 #include <itkConstantPadImageFilter.h>
34 #include <itkImageSliceIteratorWithIndex.h>
35
36 namespace clitk {
37
38   //--------------------------------------------------------------------
39   template<class ImageType>
40   void ComputeBBFromImageRegion(const ImageType * image, 
41                                 typename ImageType::RegionType region,
42                                 typename itk::BoundingBox<unsigned long, 
43                                 ImageType::ImageDimension>::Pointer bb) {
44     typedef typename ImageType::IndexType IndexType;
45     IndexType firstIndex;
46     IndexType lastIndex;
47     for(unsigned int i=0; i<image->GetImageDimension(); i++) {
48       firstIndex[i] = region.GetIndex()[i];
49       lastIndex[i] = firstIndex[i]+region.GetSize()[i];
50     }
51
52     typedef itk::BoundingBox<unsigned long, 
53                              ImageType::ImageDimension> BBType;
54     typedef typename BBType::PointType PointType;
55     PointType lastPoint;
56     PointType firstPoint;
57     image->TransformIndexToPhysicalPoint(firstIndex, firstPoint);
58     image->TransformIndexToPhysicalPoint(lastIndex, lastPoint);
59
60     bb->SetMaximum(lastPoint);
61     bb->SetMinimum(firstPoint);
62   }
63   //--------------------------------------------------------------------
64
65
66   //--------------------------------------------------------------------
67   template<int Dimension>
68   void ComputeBBIntersection(typename itk::BoundingBox<unsigned long, Dimension>::Pointer bbo, 
69                              typename itk::BoundingBox<unsigned long, Dimension>::Pointer bbi1, 
70                              typename itk::BoundingBox<unsigned long, Dimension>::Pointer bbi2) {
71
72     typedef itk::BoundingBox<unsigned long, Dimension> BBType;
73     typedef typename BBType::PointType PointType;
74     PointType lastPoint;
75     PointType firstPoint;
76
77     for(unsigned int i=0; i<Dimension; i++) {
78       firstPoint[i] = std::max(bbi1->GetMinimum()[i], 
79                                bbi2->GetMinimum()[i]);
80       lastPoint[i] = std::min(bbi1->GetMaximum()[i], 
81                               bbi2->GetMaximum()[i]);
82     }
83
84     bbo->SetMaximum(lastPoint);
85     bbo->SetMinimum(firstPoint);
86   }
87   //--------------------------------------------------------------------
88
89
90   //--------------------------------------------------------------------
91   template<class ImageType>
92   void ComputeRegionFromBB(const ImageType * image, 
93                            const typename itk::BoundingBox<unsigned long, 
94                                                            ImageType::ImageDimension>::Pointer bb, 
95                            typename ImageType::RegionType & region) {
96     // Types
97     typedef typename ImageType::IndexType  IndexType;
98     typedef typename ImageType::PointType  PointType;
99     typedef typename ImageType::RegionType RegionType;
100     typedef typename ImageType::SizeType   SizeType;
101
102     // Region starting point
103     IndexType regionStart;
104     PointType start = bb->GetMinimum();
105     image->TransformPhysicalPointToIndex(start, regionStart);
106     
107     // Region size
108     SizeType regionSize;
109     PointType maxs = bb->GetMaximum();
110     PointType mins = bb->GetMinimum();
111     for(unsigned int i=0; i<ImageType::ImageDimension; i++) {
112       regionSize[i] = lrint((maxs[i] - mins[i])/image->GetSpacing()[i]);
113     }
114    
115     // Create region
116     region.SetIndex(regionStart);
117     region.SetSize(regionSize);
118   }
119   //--------------------------------------------------------------------
120
121   //--------------------------------------------------------------------
122   template<class ImageType, class TMaskImageType>
123   typename ImageType::Pointer
124   SetBackground(const ImageType * input, 
125                 const TMaskImageType * mask, 
126                 typename TMaskImageType::PixelType maskBG,
127                 typename ImageType::PixelType outValue, 
128                 bool inPlace) {
129     typedef SetBackgroundImageFilter<ImageType, TMaskImageType, ImageType> 
130       SetBackgroundImageFilterType;
131     typename SetBackgroundImageFilterType::Pointer setBackgroundFilter 
132       = SetBackgroundImageFilterType::New();
133     //  if (inPlace) setBackgroundFilter->ReleaseDataFlagOn(); // No seg fault
134     setBackgroundFilter->SetInPlace(inPlace); // This is important to keep memory low
135     setBackgroundFilter->SetInput(input);
136     setBackgroundFilter->SetInput2(mask);
137     setBackgroundFilter->SetMaskValue(maskBG);
138     setBackgroundFilter->SetOutsideValue(outValue);
139     setBackgroundFilter->Update();
140     return setBackgroundFilter->GetOutput();
141   }
142   //--------------------------------------------------------------------
143
144
145   //--------------------------------------------------------------------
146   template<class ImageType>
147   int GetNumberOfConnectedComponentLabels(const ImageType * input, 
148                                           typename ImageType::PixelType BG, 
149                                           bool isFullyConnected) {
150     // Connected Component label 
151     typedef itk::ConnectedComponentImageFilter<ImageType, ImageType> ConnectFilterType;
152     typename ConnectFilterType::Pointer connectFilter = ConnectFilterType::New();
153     connectFilter->SetInput(input);
154     connectFilter->SetBackgroundValue(BG);
155     connectFilter->SetFullyConnected(isFullyConnected);
156     connectFilter->Update();
157   
158     // Return result
159     return connectFilter->GetObjectCount();
160   }
161   //--------------------------------------------------------------------
162
163   //--------------------------------------------------------------------
164   /*
165     Warning : in this cas, we consider outputType like inputType, not
166     InternalImageType. Be sure it fits.
167   */
168   template<class ImageType>
169   typename ImageType::Pointer
170   Labelize(const ImageType * input, 
171            typename ImageType::PixelType BG, 
172            bool isFullyConnected, 
173            int minimalComponentSize) {
174     // InternalImageType for storing large number of component
175     typedef itk::Image<int, ImageType::ImageDimension> InternalImageType;
176   
177     // Connected Component label 
178     typedef itk::ConnectedComponentImageFilter<ImageType, InternalImageType> ConnectFilterType;
179     typename ConnectFilterType::Pointer connectFilter = ConnectFilterType::New();
180     //  connectFilter->ReleaseDataFlagOn(); 
181     connectFilter->SetInput(input);
182     connectFilter->SetBackgroundValue(BG);
183     connectFilter->SetFullyConnected(isFullyConnected);
184   
185     // Sort by size and remove too small area.
186     typedef itk::RelabelComponentImageFilter<InternalImageType, ImageType> RelabelFilterType;
187     typename RelabelFilterType::Pointer relabelFilter = RelabelFilterType::New();
188     //  relabelFilter->ReleaseDataFlagOn(); // if yes, fail when ExplosionControlledThresholdConnectedImageFilter ???
189     relabelFilter->SetInput(connectFilter->GetOutput());
190     relabelFilter->SetMinimumObjectSize(minimalComponentSize);
191     relabelFilter->Update();
192
193     // Return result
194     typename ImageType::Pointer output = relabelFilter->GetOutput();
195     return output;
196   }
197   //--------------------------------------------------------------------
198
199
200   //--------------------------------------------------------------------
201   /*
202     Warning : in this cas, we consider outputType like inputType, not
203     InternalImageType. Be sure it fits.
204   */
205   template<class ImageType>
206   typename ImageType::Pointer
207   LabelizeAndCountNumberOfObjects(const ImageType * input, 
208                                   typename ImageType::PixelType BG, 
209                                   bool isFullyConnected, 
210                                   int minimalComponentSize, 
211                                   int & nb) {
212     // InternalImageType for storing large number of component
213     typedef itk::Image<int, ImageType::ImageDimension> InternalImageType;
214   
215     // Connected Component label 
216     typedef itk::ConnectedComponentImageFilter<ImageType, InternalImageType> ConnectFilterType;
217     typename ConnectFilterType::Pointer connectFilter = ConnectFilterType::New();
218     //  connectFilter->ReleaseDataFlagOn(); 
219     connectFilter->SetInput(input);
220     connectFilter->SetBackgroundValue(BG);
221     connectFilter->SetFullyConnected(isFullyConnected);
222   
223     // Sort by size and remove too small area.
224     typedef itk::RelabelComponentImageFilter<InternalImageType, ImageType> RelabelFilterType;
225     typename RelabelFilterType::Pointer relabelFilter = RelabelFilterType::New();
226     //  relabelFilter->ReleaseDataFlagOn(); // if yes, fail when ExplosionControlledThresholdConnectedImageFilter ???
227     relabelFilter->SetInput(connectFilter->GetOutput());
228     relabelFilter->SetMinimumObjectSize(minimalComponentSize);
229     relabelFilter->Update();
230
231     nb = relabelFilter->GetNumberOfObjects();
232     // DD(relabelFilter->GetOriginalNumberOfObjects());
233     // DD(relabelFilter->GetSizeOfObjectsInPhysicalUnits()[0]);
234
235     // Return result
236     typename ImageType::Pointer output = relabelFilter->GetOutput();
237     return output;
238   }
239   //--------------------------------------------------------------------
240
241
242
243   //--------------------------------------------------------------------
244   template<class ImageType>
245   typename ImageType::Pointer
246   RemoveLabels(const ImageType * input, 
247                typename ImageType::PixelType BG,
248                std::vector<typename ImageType::PixelType> & labelsToRemove) {
249     assert(labelsToRemove.size() != 0);
250     typename ImageType::Pointer working_image;// = input;
251     for (unsigned int i=0; i <labelsToRemove.size(); i++) {
252       typedef SetBackgroundImageFilter<ImageType, ImageType> SetBackgroundImageFilterType;
253       typename SetBackgroundImageFilterType::Pointer setBackgroundFilter = SetBackgroundImageFilterType::New();
254       setBackgroundFilter->SetInput(input);
255       setBackgroundFilter->SetInput2(input);
256       setBackgroundFilter->SetMaskValue(labelsToRemove[i]);
257       setBackgroundFilter->SetOutsideValue(BG);
258       setBackgroundFilter->Update();
259       working_image = setBackgroundFilter->GetOutput();
260     }
261     return working_image;
262   }
263   //--------------------------------------------------------------------
264
265
266   //--------------------------------------------------------------------
267   template<class ImageType>
268   typename ImageType::Pointer
269   KeepLabels(const ImageType * input, 
270              typename ImageType::PixelType BG, 
271              typename ImageType::PixelType FG, 
272              typename ImageType::PixelType firstKeep, 
273              typename ImageType::PixelType lastKeep, 
274              bool useLastKeep) {
275     typedef itk::BinaryThresholdImageFilter<ImageType, ImageType> BinarizeFilterType; 
276     typename BinarizeFilterType::Pointer binarizeFilter = BinarizeFilterType::New();
277     binarizeFilter->SetInput(input);
278     binarizeFilter->SetLowerThreshold(firstKeep);
279     if (useLastKeep) binarizeFilter->SetUpperThreshold(lastKeep);
280     binarizeFilter->SetInsideValue(FG);
281     binarizeFilter->SetOutsideValue(BG);
282     binarizeFilter->Update();
283     return binarizeFilter->GetOutput();
284   }
285   //--------------------------------------------------------------------
286
287
288   //--------------------------------------------------------------------
289   template<class ImageType>
290   typename ImageType::Pointer
291   LabelizeAndSelectLabels(const ImageType * input,
292                           typename ImageType::PixelType BG, 
293                           typename ImageType::PixelType FG, 
294                           bool isFullyConnected,
295                           int minimalComponentSize,
296                           LabelizeParameters<typename ImageType::PixelType> * param)
297   {
298     typename ImageType::Pointer working_image;
299     working_image = Labelize<ImageType>(input, BG, isFullyConnected, minimalComponentSize);
300     if (param->GetLabelsToRemove().size() != 0)
301       working_image = RemoveLabels<ImageType>(working_image, BG, param->GetLabelsToRemove());
302     working_image = KeepLabels<ImageType>(working_image, 
303                                           BG, FG, 
304                                           param->GetFirstKeep(), 
305                                           param->GetLastKeep(), 
306                                           param->GetUseLastKeep());
307     return working_image;
308   }
309   //--------------------------------------------------------------------
310
311
312   //--------------------------------------------------------------------
313   template<class ImageType>
314   typename ImageType::Pointer
315   ResizeImageLike(const ImageType * input,                       
316                   const itk::ImageBase<ImageType::ImageDimension> * like, 
317                   typename ImageType::PixelType backgroundValue) 
318   {
319     typedef CropLikeImageFilter<ImageType> CropFilterType;
320     typename CropFilterType::Pointer cropFilter = CropFilterType::New();
321     cropFilter->SetInput(input);
322     cropFilter->SetCropLikeImage(like);
323     cropFilter->SetBackgroundValue(backgroundValue);
324     cropFilter->Update();
325     return cropFilter->GetOutput();  
326   }
327   //--------------------------------------------------------------------
328
329
330   //--------------------------------------------------------------------
331   template<class MaskImageType>
332   typename MaskImageType::Pointer
333   SliceBySliceRelativePosition(const MaskImageType * input,
334                                const MaskImageType * object,
335                                int direction, 
336                                double threshold, 
337                                std::string orientation, 
338                                bool uniqueConnectedComponent, 
339                                double spacing, 
340                                bool autocropFlag, 
341                                bool singleObjectCCL) 
342   {
343     typedef SliceBySliceRelativePositionFilter<MaskImageType> SliceRelPosFilterType;
344     typename SliceRelPosFilterType::Pointer sliceRelPosFilter = SliceRelPosFilterType::New();
345     sliceRelPosFilter->VerboseStepFlagOff();
346     sliceRelPosFilter->WriteStepFlagOff();
347     sliceRelPosFilter->SetInput(input);
348     sliceRelPosFilter->SetInputObject(object);
349     sliceRelPosFilter->SetDirection(direction);
350     sliceRelPosFilter->SetFuzzyThreshold(threshold);
351     sliceRelPosFilter->AddOrientationTypeString(orientation);
352     sliceRelPosFilter->SetIntermediateSpacingFlag((spacing != -1));
353     sliceRelPosFilter->SetIntermediateSpacing(spacing);
354     sliceRelPosFilter->SetUniqueConnectedComponentBySlice(uniqueConnectedComponent);
355     sliceRelPosFilter->SetUseASingleObjectConnectedComponentBySliceFlag(singleObjectCCL);
356     //    sliceRelPosFilter->SetInverseOrientationFlag(inverseflag); 
357     sliceRelPosFilter->SetAutoCropFlag(autocropFlag); 
358     sliceRelPosFilter->IgnoreEmptySliceObjectFlagOn();
359     sliceRelPosFilter->Update();
360     return sliceRelPosFilter->GetOutput();
361   }
362   //--------------------------------------------------------------------
363
364   //--------------------------------------------------------------------
365   template<class ImageType>
366   bool
367   FindExtremaPointInAGivenDirection(const ImageType * input, 
368                                     typename ImageType::PixelType bg, 
369                                     int direction, bool opposite, 
370                                     typename ImageType::PointType & point)
371   {
372     typename ImageType::PointType dummy;
373     return FindExtremaPointInAGivenDirection(input, bg, direction, 
374                                              opposite, dummy, 0, point);
375   }
376   //--------------------------------------------------------------------
377
378   //--------------------------------------------------------------------
379   template<class ImageType>
380   bool
381   FindExtremaPointInAGivenDirection(const ImageType * input, 
382                                     typename ImageType::PixelType bg, 
383                                     int direction, bool opposite, 
384                                     typename ImageType::PointType refpoint,
385                                     double distanceMax, 
386                                     typename ImageType::PointType & point)
387   {
388     /*
389       loop over input pixels, store the index in the fg that is max
390       according to the given direction. 
391     */    
392     typedef itk::ImageRegionConstIteratorWithIndex<ImageType> IteratorType;
393     IteratorType iter(input, input->GetLargestPossibleRegion());
394     iter.GoToBegin();
395     typename ImageType::IndexType max = input->GetLargestPossibleRegion().GetIndex();
396     if (opposite) max = max+input->GetLargestPossibleRegion().GetSize();
397     bool found=false;
398     while (!iter.IsAtEnd()) {
399       if (iter.Get() != bg) {
400         bool test = iter.GetIndex()[direction] >  max[direction];
401         if (opposite) test = !test;
402         if (test) {
403           typename ImageType::PointType p;
404           input->TransformIndexToPhysicalPoint(iter.GetIndex(), p);
405           if ((distanceMax==0) || (p.EuclideanDistanceTo(refpoint) < distanceMax)) {
406             max = iter.GetIndex();
407             found = true;
408           }
409         }
410       }
411       ++iter;
412     }
413     if (!found) return false;
414     input->TransformIndexToPhysicalPoint(max, point);
415     return true;
416   }
417   //--------------------------------------------------------------------
418
419
420   //--------------------------------------------------------------------
421   template<class ImageType>
422   typename ImageType::Pointer
423   CropImageRemoveGreaterThan(const ImageType * image, 
424                  int dim, double min, bool autoCrop,
425                  typename ImageType::PixelType BG) 
426   {
427     return CropImageAlongOneAxis<ImageType>(image, dim, 
428                                             image->GetOrigin()[dim], 
429                                             min,
430                                             autoCrop, BG);
431   }
432   //--------------------------------------------------------------------
433
434
435   //--------------------------------------------------------------------
436   template<class ImageType>
437   typename ImageType::Pointer
438   CropImageRemoveLowerThan(const ImageType * image, 
439                  int dim, double max, bool autoCrop,
440                  typename ImageType::PixelType BG) 
441   {
442     typename ImageType::PointType p;
443     image->TransformIndexToPhysicalPoint(image->GetLargestPossibleRegion().GetIndex()+
444                                          image->GetLargestPossibleRegion().GetSize(), p);
445     return CropImageAlongOneAxis<ImageType>(image, dim, max, p[dim], autoCrop, BG);
446   }
447   //--------------------------------------------------------------------
448
449
450   //--------------------------------------------------------------------
451   template<class ImageType>
452   typename ImageType::Pointer
453   CropImageAlongOneAxis(const ImageType * image, 
454                         int dim, double min, double max, 
455                         bool autoCrop, typename ImageType::PixelType BG) 
456   {
457     // Compute region size
458     typename ImageType::RegionType region;
459     typename ImageType::SizeType size = image->GetLargestPossibleRegion().GetSize();
460     typename ImageType::PointType p = image->GetOrigin();
461     p[dim] = min;
462     typename ImageType::IndexType start;
463     image->TransformPhysicalPointToIndex(p, start);
464     p[dim] = max;
465     typename ImageType::IndexType end;
466     image->TransformPhysicalPointToIndex(p, end);
467     size[dim] = fabs(end[dim]-start[dim]);
468     region.SetIndex(start);
469     region.SetSize(size);
470   
471     // Perform Crop
472     typedef itk::RegionOfInterestImageFilter<ImageType, ImageType> CropFilterType;
473     typename CropFilterType::Pointer cropFilter = CropFilterType::New();
474     cropFilter->SetInput(image);
475     cropFilter->SetRegionOfInterest(region);
476     cropFilter->Update();
477     typename ImageType::Pointer result = cropFilter->GetOutput();
478   
479     // Auto Crop
480     if (autoCrop) {
481       result = AutoCrop<ImageType>(result, BG);
482     }
483     return result;
484   }
485   //--------------------------------------------------------------------
486
487
488   //--------------------------------------------------------------------
489   template<class ImageType>
490   void
491   ComputeCentroids(const ImageType * image, 
492                    typename ImageType::PixelType BG, 
493                    std::vector<typename ImageType::PointType> & centroids) 
494   {
495     typedef long LabelType;
496     static const unsigned int Dim = ImageType::ImageDimension;
497     typedef itk::ShapeLabelObject< LabelType, Dim > LabelObjectType;
498     typedef itk::LabelMap< LabelObjectType > LabelMapType;
499     typedef itk::LabelImageToLabelMapFilter<ImageType, LabelMapType> ImageToMapFilterType;
500     typename ImageToMapFilterType::Pointer imageToLabelFilter = ImageToMapFilterType::New(); 
501     typedef itk::ShapeLabelMapFilter<LabelMapType, ImageType> ShapeFilterType; 
502     typename ShapeFilterType::Pointer statFilter = ShapeFilterType::New();
503     imageToLabelFilter->SetBackgroundValue(BG);
504     imageToLabelFilter->SetInput(image);
505     statFilter->SetInput(imageToLabelFilter->GetOutput());
506     statFilter->Update();
507     typename LabelMapType::Pointer labelMap = statFilter->GetOutput();
508
509     centroids.clear();
510     typename ImageType::PointType dummy;
511     centroids.push_back(dummy); // label 0 -> no centroid, use dummy point for BG 
512     //DS FIXME (not useful ! to change ..)
513     DD(labelMap->GetNumberOfLabelObjects());
514     for(uint i=0; i<labelMap->GetNumberOfLabelObjects(); i++) {
515       int label = labelMap->GetLabels()[i];
516       centroids.push_back(labelMap->GetLabelObject(label)->GetCentroid());
517     } 
518   }
519   //--------------------------------------------------------------------
520
521
522   //--------------------------------------------------------------------
523   template<class ImageType>
524   void
525   ComputeCentroids2(const ImageType * image, 
526                    typename ImageType::PixelType BG, 
527                    std::vector<typename ImageType::PointType> & centroids) 
528   {
529     typedef long LabelType;
530     static const unsigned int Dim = ImageType::ImageDimension;
531     typedef itk::ShapeLabelObject< LabelType, Dim > LabelObjectType;
532     typedef itk::LabelMap< LabelObjectType > LabelMapType;
533     typedef itk::LabelImageToLabelMapFilter<ImageType, LabelMapType> ImageToMapFilterType;
534     typename ImageToMapFilterType::Pointer imageToLabelFilter = ImageToMapFilterType::New(); 
535     typedef itk::ShapeLabelMapFilter<LabelMapType, ImageType> ShapeFilterType; 
536     typename ShapeFilterType::Pointer statFilter = ShapeFilterType::New();
537     imageToLabelFilter->SetBackgroundValue(BG);
538     imageToLabelFilter->SetInput(image);
539     statFilter->SetInput(imageToLabelFilter->GetOutput());
540     statFilter->Update();
541     typename LabelMapType::Pointer labelMap = statFilter->GetOutput();
542
543     centroids.clear();
544     typename ImageType::PointType dummy;
545     centroids.push_back(dummy); // label 0 -> no centroid, use dummy point
546     for(uint i=1; i<labelMap->GetNumberOfLabelObjects()+1; i++) {
547       centroids.push_back(labelMap->GetLabelObject(i)->GetCentroid());
548     } 
549     
550     for(uint i=1; i<labelMap->GetNumberOfLabelObjects()+1; i++) {
551       DD(labelMap->GetLabelObject(i)->GetBinaryPrincipalAxes());
552       DD(labelMap->GetLabelObject(i)->GetBinaryFlatness());
553       DD(labelMap->GetLabelObject(i)->GetRoundness ());      
554
555       // search for the point on the boundary alog PA
556
557     }
558
559   }
560   //--------------------------------------------------------------------
561
562
563   //--------------------------------------------------------------------
564   template<class ImageType>
565   void
566   ExtractSlices(const ImageType * image, int direction, 
567                 std::vector<typename itk::Image<typename ImageType::PixelType, 
568                                                 ImageType::ImageDimension-1>::Pointer > & slices) 
569   {
570     typedef ExtractSliceFilter<ImageType> ExtractSliceFilterType;
571     typedef typename ExtractSliceFilterType::SliceType SliceType;
572     typename ExtractSliceFilterType::Pointer 
573       extractSliceFilter = ExtractSliceFilterType::New();
574     extractSliceFilter->SetInput(image);
575     extractSliceFilter->SetDirection(direction);
576     extractSliceFilter->Update();
577     extractSliceFilter->GetOutputSlices(slices);
578   }
579   //--------------------------------------------------------------------
580
581
582   //--------------------------------------------------------------------
583   template<class ImageType>
584   void
585   PointsUtils<ImageType>::Convert2DTo3D(const PointType2D & p2D, 
586                                         const ImageType * image, 
587                                         const int slice, 
588                                         PointType3D & p3D)  
589   {
590     IndexType3D index3D;
591     index3D[0] = index3D[1] = 0;
592     index3D[2] = image->GetLargestPossibleRegion().GetIndex()[2]+slice;
593     image->TransformIndexToPhysicalPoint(index3D, p3D);
594     p3D[0] = p2D[0]; 
595     p3D[1] = p2D[1];
596     //  p3D[2] = p[2];//(image->GetLargestPossibleRegion().GetIndex()[2]+slice)*image->GetSpacing()[2] 
597     //    + image->GetOrigin()[2];
598   }
599   //--------------------------------------------------------------------
600
601
602   //--------------------------------------------------------------------
603   template<class ImageType>
604   void 
605   PointsUtils<ImageType>::Convert2DMapTo3DList(const MapPoint2DType & map, 
606                                             const ImageType * image, 
607                                             VectorPoint3DType & list)
608   {
609     typename MapPoint2DType::const_iterator iter = map.begin();
610     while (iter != map.end()) {
611       PointType3D p;
612       Convert2DTo3D(iter->second, image, iter->first, p);
613       list.push_back(p);
614       ++iter;
615     }
616   }
617   //--------------------------------------------------------------------
618
619
620   //--------------------------------------------------------------------
621   template<class ImageType>
622   void 
623   PointsUtils<ImageType>::Convert2DListTo3DList(const VectorPoint2DType & p2D, 
624                                                 int slice,
625                                                 const ImageType * image, 
626                                                 VectorPoint3DType & list) 
627   {
628     for(uint i=0; i<p2D.size(); i++) {
629       PointType3D p;
630       Convert2DTo3D(p2D[i], image, slice, p);
631       list.push_back(p);
632     }
633   }
634   //--------------------------------------------------------------------
635
636
637   //--------------------------------------------------------------------
638   template<class ImageType>
639   void 
640   WriteListOfLandmarks(std::vector<typename ImageType::PointType> points, 
641                        std::string filename)
642   {
643     std::ofstream os; 
644     openFileForWriting(os, filename); 
645     os << "LANDMARKS1" << std::endl;  
646     for(uint i=0; i<points.size(); i++) {
647       const typename ImageType::PointType & p = points[i];
648       // Write it in the file
649       os << i << " " << p[0] << " " << p[1] << " " << p[2] << " 0 0 " << std::endl;
650     }
651     os.close();
652   }
653   //--------------------------------------------------------------------
654
655
656   //--------------------------------------------------------------------
657   template<class ImageType>
658   typename ImageType::Pointer 
659   Dilate(const ImageType * image, double radiusInMM,               
660          typename ImageType::PixelType BG,
661          typename ImageType::PixelType FG,  
662          bool extendSupport)
663   {
664     typename ImageType::SizeType r;
665     for(uint i=0; i<ImageType::ImageDimension; i++) 
666       r[i] = (uint)lrint(radiusInMM/image->GetSpacing()[i]);
667     return Dilate<ImageType>(image, r, BG, FG, extendSupport);
668   }
669   //--------------------------------------------------------------------
670
671
672   //--------------------------------------------------------------------
673   template<class ImageType>
674   typename ImageType::Pointer 
675   Dilate(const ImageType * image, typename ImageType::PointType radiusInMM, 
676          typename ImageType::PixelType BG, 
677          typename ImageType::PixelType FG, 
678          bool extendSupport)
679   {
680     typename ImageType::SizeType r;
681     for(uint i=0; i<ImageType::ImageDimension; i++) 
682       r[i] = (uint)lrint(radiusInMM[i]/image->GetSpacing()[i]);
683     return Dilate<ImageType>(image, r, BG, FG, extendSupport);
684   }
685   //--------------------------------------------------------------------
686
687
688   //--------------------------------------------------------------------
689   template<class ImageType>
690   typename ImageType::Pointer 
691   Dilate(const ImageType * image, typename ImageType::SizeType radius, 
692          typename ImageType::PixelType BG, 
693          typename ImageType::PixelType FG, 
694          bool extendSupport)
695   {
696     // Create kernel for dilatation
697     typedef itk::BinaryBallStructuringElement<typename ImageType::PixelType, 
698                                               ImageType::ImageDimension> KernelType;
699     KernelType structuringElement;
700     structuringElement.SetRadius(radius);
701     structuringElement.CreateStructuringElement();
702
703     typename ImageType::Pointer output;
704     if (extendSupport) {
705       typedef itk::ConstantPadImageFilter<ImageType, ImageType> PadFilterType;
706       typename PadFilterType::Pointer padFilter = PadFilterType::New();
707       padFilter->SetInput(image);
708       typename ImageType::SizeType lower;
709       typename ImageType::SizeType upper;
710       for(uint i=0; i<3; i++) {
711         lower[i] = upper[i] = 2*(radius[i]+1);
712       }
713       padFilter->SetPadLowerBound(lower);
714       padFilter->SetPadUpperBound(upper);
715       padFilter->Update();
716       output = padFilter->GetOutput();
717     }
718
719     // Dilate  filter
720     typedef itk::BinaryDilateImageFilter<ImageType, ImageType , KernelType> DilateFilterType;
721     typename DilateFilterType::Pointer dilateFilter = DilateFilterType::New();
722     dilateFilter->SetBackgroundValue(BG);
723     dilateFilter->SetForegroundValue(FG);
724     dilateFilter->SetBoundaryToForeground(false);
725     dilateFilter->SetKernel(structuringElement);
726     dilateFilter->SetInput(output);
727     dilateFilter->Update();
728     return dilateFilter->GetOutput();
729   }
730   //--------------------------------------------------------------------
731
732
733   //--------------------------------------------------------------------
734   template<class ValueType, class VectorType>
735   void ConvertOption(std::string optionName, uint given, 
736                      ValueType * values, VectorType & p, 
737                      uint dim, bool required) 
738   {
739     if (required && (given == 0)) {
740       clitkExceptionMacro("The option --" << optionName << " must be set and have 1 or " 
741                           << dim << " values.");
742     }
743     if (given == 1) {
744       for(uint i=0; i<dim; i++) p[i] = values[0];
745       return;
746     }
747     if (given == dim) {
748       for(uint i=0; i<dim; i++) p[i] = values[i];
749       return;
750     }
751     if (given == 0) return;
752     clitkExceptionMacro("The option --" << optionName << " must have 1 or " 
753                         << dim << " values.");
754   }
755   //--------------------------------------------------------------------
756
757
758   //--------------------------------------------------------------------
759   /*
760     http://www.gamedev.net/community/forums/topic.asp?topic_id=542870
761     Assuming the points are (Ax,Ay) (Bx,By) and (Cx,Cy), you need to compute:
762     (Bx - Ax) * (Cy - Ay) - (By - Ay) * (Cx - Ax)
763     This will equal zero if the point C is on the line formed by
764     points A and B, and will have a different sign depending on the
765     side. Which side this is depends on the orientation of your (x,y)
766     coordinates, but you can plug test values for A,B and C into this
767     formula to determine whether negative values are to the left or to
768     the right.
769     => to accelerate, start with formula, when change sign -> stop and fill
770
771     offsetToKeep = is used to determine which side of the line we
772     keep. The point along the mainDirection but 'offsetToKeep' mm away
773     is kept.
774   
775   */
776   template<class ImageType>
777   void 
778   SliceBySliceSetBackgroundFromLineSeparation(ImageType * input, 
779                                               std::vector<typename ImageType::PointType> & lA, 
780                                               std::vector<typename ImageType::PointType> & lB, 
781                                               typename ImageType::PixelType BG, 
782                                               int mainDirection, 
783                                               double offsetToKeep)
784   {
785     typedef itk::ImageSliceIteratorWithIndex<ImageType> SliceIteratorType;
786     SliceIteratorType siter = SliceIteratorType(input, 
787                                                 input->GetLargestPossibleRegion());
788     siter.SetFirstDirection(0);
789     siter.SetSecondDirection(1);
790     siter.GoToBegin();
791     uint i=0;
792     typename ImageType::PointType A;
793     typename ImageType::PointType B;
794     typename ImageType::PointType C;
795     assert(lA.size() == lB.size());
796     while ((i<lA.size()) && (!siter.IsAtEnd())) {
797       // Check that the current slice correspond to the current point
798       input->TransformIndexToPhysicalPoint(siter.GetIndex(), C);
799       // DD(C);
800       // DD(i);
801       // DD(lA[i]);
802       if ((fabs(C[2] - lA[i][2]))>0.01) { // is !equal with a tolerance of 0.01 mm
803       }
804       else {
805         // Define A,B,C points
806         A = lA[i];
807         B = lB[i];
808         C = A;
809         // DD(A);
810         // DD(B);
811         // DD(C);
812       
813         // Check that the line is not a point (A=B)
814         bool p = (A[0] == B[0]) && (A[1] == B[1]);
815       
816         if (!p) {
817           C[mainDirection] += offsetToKeep; // I know I must keep this point
818           double s = (B[0] - A[0]) * (C[1] - A[1]) - (B[1] - A[1]) * (C[0] - A[0]);
819           bool isPositive = s<0;
820           while (!siter.IsAtEndOfSlice()) {
821             while (!siter.IsAtEndOfLine()) {
822               // Very slow, I know ... but image should be very small
823               input->TransformIndexToPhysicalPoint(siter.GetIndex(), C);
824               double s = (B[0] - A[0]) * (C[1] - A[1]) - (B[1] - A[1]) * (C[0] - A[0]);
825               if (s == 0) siter.Set(BG); // on the line, we decide to remove
826               if (isPositive) {
827                 if (s > 0) siter.Set(BG);
828               }
829               else {
830                 if (s < 0) siter.Set(BG); 
831               }
832               ++siter;
833             }
834             siter.NextLine();
835           } // end loop slice
836         }      
837
838         ++i;
839       } // End of current slice
840       siter.NextSlice();
841     }
842   }                                                   
843   //--------------------------------------------------------------------
844
845   //--------------------------------------------------------------------
846   template<class ImageType>
847   void 
848   AndNot(ImageType * input, 
849          const ImageType * object, 
850          typename ImageType::PixelType BG)
851   {
852     typename ImageType::Pointer o;
853     bool resized=false;
854     if (!clitk::HaveSameSizeAndSpacing<ImageType, ImageType>(input, object)) {
855       o = clitk::ResizeImageLike<ImageType>(object, input, BG);
856       resized = true;
857     }
858
859     typedef clitk::BooleanOperatorLabelImageFilter<ImageType> BoolFilterType;
860     typename BoolFilterType::Pointer boolFilter = BoolFilterType::New(); 
861     boolFilter->InPlaceOn();
862     boolFilter->SetInput1(input);
863     if (resized) boolFilter->SetInput2(o);  
864     else boolFilter->SetInput2(object);
865     boolFilter->SetBackgroundValue1(BG);
866     boolFilter->SetBackgroundValue2(BG);
867     boolFilter->SetOperationType(BoolFilterType::AndNot);
868     boolFilter->Update();
869   }
870   //--------------------------------------------------------------------
871
872
873   //--------------------------------------------------------------------
874   template<class ImageType>
875   typename ImageType::Pointer
876   Binarize(const ImageType * input, 
877            typename ImageType::PixelType lower, 
878            typename ImageType::PixelType upper, 
879            typename ImageType::PixelType BG,
880            typename ImageType::PixelType FG) 
881   {
882     typedef itk::BinaryThresholdImageFilter<ImageType, ImageType> BinaryThresholdFilterType;
883     typename BinaryThresholdFilterType::Pointer binarizeFilter = BinaryThresholdFilterType::New();
884     binarizeFilter->SetInput(input);
885     binarizeFilter->InPlaceOff();
886     binarizeFilter->SetLowerThreshold(lower);
887     binarizeFilter->SetUpperThreshold(upper);
888     binarizeFilter->SetInsideValue(FG);
889     binarizeFilter->SetOutsideValue(BG);
890     binarizeFilter->Update();
891     return binarizeFilter->GetOutput();
892   }
893   //--------------------------------------------------------------------
894
895
896   //--------------------------------------------------------------------
897   template<class ImageType>
898   void
899   GetMinMaxPointPosition(const ImageType * input, 
900                          typename ImageType::PointType & min,
901                          typename ImageType::PointType & max) 
902   {
903     typename ImageType::IndexType index = input->GetLargestPossibleRegion().GetIndex();
904     input->TransformIndexToPhysicalPoint(index, min);
905     index = index+input->GetLargestPossibleRegion().GetSize();
906     input->TransformIndexToPhysicalPoint(index, max);
907   }
908   //--------------------------------------------------------------------
909
910
911   //--------------------------------------------------------------------
912   template<class ImageType>
913   typename ImageType::PointType
914   FindExtremaPointInAGivenLine(const ImageType * input, 
915                                int dimension, 
916                                bool inverse, 
917                                typename ImageType::PointType p, 
918                                typename ImageType::PixelType BG, 
919                                double distanceMax) 
920   {
921     // Which direction ?  Increasing or decreasing.
922     int d=1;
923     if (inverse) d=-1;
924   
925     // Transform to pixel index
926     typename ImageType::IndexType index;
927     input->TransformPhysicalPointToIndex(p, index);
928
929     // Loop while inside the mask;
930     while (input->GetPixel(index) != BG) {
931       index[dimension] += d;
932     }
933
934     // Transform back to Physical Units
935     typename ImageType::PointType result;
936     input->TransformIndexToPhysicalPoint(index, result);
937
938     // Check that is is not too far away
939     double distance = p.EuclideanDistanceTo(result);
940     if (distance > distanceMax) {
941       result = p; // Get back to initial value
942     }
943
944     return result;
945   }
946   //--------------------------------------------------------------------
947
948
949   //--------------------------------------------------------------------
950   template<class PointType>
951   bool
952   IsOnTheSameLineSide(PointType C, PointType A, PointType B, PointType like) 
953   {
954     // Look at the position of point 'like' according to the AB line
955     double s = (B[0] - A[0]) * (like[1] - A[1]) - (B[1] - A[1]) * (like[0] - A[0]);
956     bool negative = s<0;
957   
958     // Look the C position
959     s = (B[0] - A[0]) * (C[1] - A[1]) - (B[1] - A[1]) * (C[0] - A[0]);
960
961     if (negative && (s<=0)) return true;
962     if (!negative && (s>=0)) return true;
963     return false;
964   }
965   //--------------------------------------------------------------------
966
967
968   //--------------------------------------------------------------------
969   /* Consider an input object, for each slice, find the extrema
970      position according to a given direction and build a line segment
971      passing throught this point in a given direction.  Output is a
972      vector of line (from point A to B), for each slice;
973    */
974   template<class ImageType>
975   void 
976   SliceBySliceBuildLineSegmentAccordingToExtremaPosition(const ImageType * input, 
977                                                          typename ImageType::PixelType BG, 
978                                                          int sliceDimension, 
979                                                          int extremaDirection, 
980                                                          bool extremaOppositeFlag, 
981                                                          int lineDirection,
982                                                          double margin,
983                                                          std::vector<typename ImageType::PointType> & A, 
984                                                          std::vector<typename ImageType::PointType> & B)
985   {
986     // Type of a slice
987     typedef typename itk::Image<typename ImageType::PixelType, ImageType::ImageDimension-1> SliceType;
988     
989     // Build the list of slices
990     std::vector<typename SliceType::Pointer> slices;
991     clitk::ExtractSlices<ImageType>(input, sliceDimension, slices);
992
993     // Build the list of 2D points
994     std::map<int, typename SliceType::PointType> position2D;
995     for(uint i=0; i<slices.size(); i++) {
996       typename SliceType::PointType p;
997       bool found = 
998         clitk::FindExtremaPointInAGivenDirection<SliceType>(slices[i], BG, 
999                                                             extremaDirection, extremaOppositeFlag, p);
1000       if (found) {
1001         position2D[i] = p;
1002       }    
1003     }
1004     
1005     // Convert 2D points in slice into 3D points
1006     clitk::PointsUtils<ImageType>::Convert2DMapTo3DList(position2D, input, A);
1007     
1008     // Create additional point just right to the previous ones, on the
1009     // given lineDirection, in order to create a horizontal/vertical line.
1010     for(uint i=0; i<A.size(); i++) {
1011       typename ImageType::PointType p = A[i];
1012       p[lineDirection] += 10;
1013       B.push_back(p);
1014       // Margins ?
1015       A[i][1] += margin;
1016       B[i][1] += margin;
1017     }
1018
1019   }
1020   //--------------------------------------------------------------------
1021
1022
1023 } // end of namespace
1024