]> Creatis software - clitk.git/blob - itk/clitkSegmentationUtils.txx
replace SmartPointer with raw pointer for function (recommended)
[clitk.git] / itk / clitkSegmentationUtils.txx
1 /*=========================================================================
2   Program:   vv                     http://www.creatis.insa-lyon.fr/rio/vv
3
4   Authors belong to: 
5   - University of LYON              http://www.universite-lyon.fr/
6   - Léon Bérard cancer center       http://oncora1.lyon.fnclcc.fr
7   - CREATIS CNRS laboratory         http://www.creatis.insa-lyon.fr
8
9   This software is distributed WITHOUT ANY WARRANTY; without even
10   the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
11   PURPOSE.  See the copyright notices for more information.
12
13   It is distributed under dual licence
14
15   - BSD        See included LICENSE.txt file
16   - CeCILL-B   http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html
17   ======================================================================-====*/
18
19 // clitk
20 #include "clitkSetBackgroundImageFilter.h"
21 #include "clitkSliceBySliceRelativePositionFilter.h"
22 #include "clitkCropLikeImageFilter.h"
23 #include "clitkMemoryUsage.h"
24
25 // itk
26 #include <itkConnectedComponentImageFilter.h>
27 #include <itkRelabelComponentImageFilter.h>
28 #include <itkBinaryThresholdImageFilter.h>
29 #include <itkPasteImageFilter.h>
30 #include <itkStatisticsLabelMapFilter.h>
31 #include <itkBinaryBallStructuringElement.h>
32 #include <itkBinaryDilateImageFilter.h>
33 #include <itkConstantPadImageFilter.h>
34 #include <itkImageSliceIteratorWithIndex.h>
35
36 namespace clitk {
37
38   //--------------------------------------------------------------------
39   template<class ImageType>
40   void ComputeBBFromImageRegion(const ImageType * image, 
41                                 typename ImageType::RegionType region,
42                                 typename itk::BoundingBox<unsigned long, 
43                                 ImageType::ImageDimension>::Pointer bb) {
44     typedef typename ImageType::IndexType IndexType;
45     IndexType firstIndex;
46     IndexType lastIndex;
47     for(unsigned int i=0; i<image->GetImageDimension(); i++) {
48       firstIndex[i] = region.GetIndex()[i];
49       lastIndex[i] = firstIndex[i]+region.GetSize()[i];
50     }
51
52     typedef itk::BoundingBox<unsigned long, 
53                              ImageType::ImageDimension> BBType;
54     typedef typename BBType::PointType PointType;
55     PointType lastPoint;
56     PointType firstPoint;
57     image->TransformIndexToPhysicalPoint(firstIndex, firstPoint);
58     image->TransformIndexToPhysicalPoint(lastIndex, lastPoint);
59
60     bb->SetMaximum(lastPoint);
61     bb->SetMinimum(firstPoint);
62   }
63   //--------------------------------------------------------------------
64
65
66   //--------------------------------------------------------------------
67   template<int Dimension>
68   void ComputeBBIntersection(typename itk::BoundingBox<unsigned long, Dimension>::Pointer bbo, 
69                              typename itk::BoundingBox<unsigned long, Dimension>::Pointer bbi1, 
70                              typename itk::BoundingBox<unsigned long, Dimension>::Pointer bbi2) {
71
72     typedef itk::BoundingBox<unsigned long, Dimension> BBType;
73     typedef typename BBType::PointType PointType;
74     PointType lastPoint;
75     PointType firstPoint;
76
77     for(unsigned int i=0; i<Dimension; i++) {
78       firstPoint[i] = std::max(bbi1->GetMinimum()[i], 
79                                bbi2->GetMinimum()[i]);
80       lastPoint[i] = std::min(bbi1->GetMaximum()[i], 
81                               bbi2->GetMaximum()[i]);
82     }
83
84     bbo->SetMaximum(lastPoint);
85     bbo->SetMinimum(firstPoint);
86   }
87   //--------------------------------------------------------------------
88
89
90   //--------------------------------------------------------------------
91   template<class ImageType>
92   void ComputeRegionFromBB(const ImageType * image, 
93                            const typename itk::BoundingBox<unsigned long, 
94                                                            ImageType::ImageDimension>::Pointer bb, 
95                            typename ImageType::RegionType & region) {
96     // Types
97     typedef typename ImageType::IndexType  IndexType;
98     typedef typename ImageType::PointType  PointType;
99     typedef typename ImageType::RegionType RegionType;
100     typedef typename ImageType::SizeType   SizeType;
101
102     // Region starting point
103     IndexType regionStart;
104     PointType start = bb->GetMinimum();
105     image->TransformPhysicalPointToIndex(start, regionStart);
106     
107     // Region size
108     SizeType regionSize;
109     PointType maxs = bb->GetMaximum();
110     PointType mins = bb->GetMinimum();
111     for(unsigned int i=0; i<ImageType::ImageDimension; i++) {
112       regionSize[i] = lrint((maxs[i] - mins[i])/image->GetSpacing()[i]);
113     }
114    
115     // Create region
116     region.SetIndex(regionStart);
117     region.SetSize(regionSize);
118   }
119   //--------------------------------------------------------------------
120
121   //--------------------------------------------------------------------
122   template<class ImageType, class TMaskImageType>
123   typename ImageType::Pointer
124   SetBackground(const ImageType * input, 
125                 const TMaskImageType * mask, 
126                 typename TMaskImageType::PixelType maskBG,
127                 typename ImageType::PixelType outValue, 
128                 bool inPlace) {
129     typedef SetBackgroundImageFilter<ImageType, TMaskImageType, ImageType> 
130       SetBackgroundImageFilterType;
131     typename SetBackgroundImageFilterType::Pointer setBackgroundFilter 
132       = SetBackgroundImageFilterType::New();
133     //  if (inPlace) setBackgroundFilter->ReleaseDataFlagOn(); // No seg fault
134     setBackgroundFilter->SetInPlace(inPlace); // This is important to keep memory low
135     setBackgroundFilter->SetInput(input);
136     setBackgroundFilter->SetInput2(mask);
137     setBackgroundFilter->SetMaskValue(maskBG);
138     setBackgroundFilter->SetOutsideValue(outValue);
139     setBackgroundFilter->Update();
140     return setBackgroundFilter->GetOutput();
141   }
142   //--------------------------------------------------------------------
143
144
145   //--------------------------------------------------------------------
146   template<class ImageType>
147   int GetNumberOfConnectedComponentLabels(const ImageType * input, 
148                                           typename ImageType::PixelType BG, 
149                                           bool isFullyConnected) {
150     // Connected Component label 
151     typedef itk::ConnectedComponentImageFilter<ImageType, ImageType> ConnectFilterType;
152     typename ConnectFilterType::Pointer connectFilter = ConnectFilterType::New();
153     connectFilter->SetInput(input);
154     connectFilter->SetBackgroundValue(BG);
155     connectFilter->SetFullyConnected(isFullyConnected);
156     connectFilter->Update();
157   
158     // Return result
159     return connectFilter->GetObjectCount();
160   }
161   //--------------------------------------------------------------------
162
163   //--------------------------------------------------------------------
164   /*
165     Warning : in this cas, we consider outputType like inputType, not
166     InternalImageType. Be sure it fits.
167   */
168   template<class ImageType>
169   typename ImageType::Pointer
170   Labelize(const ImageType * input, 
171            typename ImageType::PixelType BG, 
172            bool isFullyConnected, 
173            int minimalComponentSize) {
174     // InternalImageType for storing large number of component
175     typedef itk::Image<int, ImageType::ImageDimension> InternalImageType;
176   
177     // Connected Component label 
178     typedef itk::ConnectedComponentImageFilter<ImageType, InternalImageType> ConnectFilterType;
179     typename ConnectFilterType::Pointer connectFilter = ConnectFilterType::New();
180     //  connectFilter->ReleaseDataFlagOn(); 
181     connectFilter->SetInput(input);
182     connectFilter->SetBackgroundValue(BG);
183     connectFilter->SetFullyConnected(isFullyConnected);
184   
185     // Sort by size and remove too small area.
186     typedef itk::RelabelComponentImageFilter<InternalImageType, ImageType> RelabelFilterType;
187     typename RelabelFilterType::Pointer relabelFilter = RelabelFilterType::New();
188     //  relabelFilter->ReleaseDataFlagOn(); // if yes, fail when ExplosionControlledThresholdConnectedImageFilter ???
189     relabelFilter->SetInput(connectFilter->GetOutput());
190     relabelFilter->SetMinimumObjectSize(minimalComponentSize);
191     relabelFilter->Update();
192
193     // Return result
194     typename ImageType::Pointer output = relabelFilter->GetOutput();
195     return output;
196   }
197   //--------------------------------------------------------------------
198
199
200   //--------------------------------------------------------------------
201   /*
202     Warning : in this cas, we consider outputType like inputType, not
203     InternalImageType. Be sure it fits.
204   */
205   template<class ImageType>
206   typename ImageType::Pointer
207   LabelizeAndCountNumberOfObjects(const ImageType * input, 
208                                   typename ImageType::PixelType BG, 
209                                   bool isFullyConnected, 
210                                   int minimalComponentSize, 
211                                   int & nb) {
212     // InternalImageType for storing large number of component
213     typedef itk::Image<int, ImageType::ImageDimension> InternalImageType;
214   
215     // Connected Component label 
216     typedef itk::ConnectedComponentImageFilter<ImageType, InternalImageType> ConnectFilterType;
217     typename ConnectFilterType::Pointer connectFilter = ConnectFilterType::New();
218     //  connectFilter->ReleaseDataFlagOn(); 
219     connectFilter->SetInput(input);
220     connectFilter->SetBackgroundValue(BG);
221     connectFilter->SetFullyConnected(isFullyConnected);
222   
223     // Sort by size and remove too small area.
224     typedef itk::RelabelComponentImageFilter<InternalImageType, ImageType> RelabelFilterType;
225     typename RelabelFilterType::Pointer relabelFilter = RelabelFilterType::New();
226     //  relabelFilter->ReleaseDataFlagOn(); // if yes, fail when ExplosionControlledThresholdConnectedImageFilter ???
227     relabelFilter->SetInput(connectFilter->GetOutput());
228     relabelFilter->SetMinimumObjectSize(minimalComponentSize);
229     relabelFilter->Update();
230
231     nb = relabelFilter->GetNumberOfObjects();
232     // DD(relabelFilter->GetOriginalNumberOfObjects());
233     // DD(relabelFilter->GetSizeOfObjectsInPhysicalUnits()[0]);
234
235     // Return result
236     typename ImageType::Pointer output = relabelFilter->GetOutput();
237     return output;
238   }
239   //--------------------------------------------------------------------
240
241
242
243   //--------------------------------------------------------------------
244   template<class ImageType>
245   typename ImageType::Pointer
246   RemoveLabels(const ImageType * input, 
247                typename ImageType::PixelType BG,
248                std::vector<typename ImageType::PixelType> & labelsToRemove) {
249     assert(labelsToRemove.size() != 0);
250     typename ImageType::Pointer working_image;// = input;
251     for (unsigned int i=0; i <labelsToRemove.size(); i++) {
252       typedef SetBackgroundImageFilter<ImageType, ImageType> SetBackgroundImageFilterType;
253       typename SetBackgroundImageFilterType::Pointer setBackgroundFilter = SetBackgroundImageFilterType::New();
254       setBackgroundFilter->SetInput(input);
255       setBackgroundFilter->SetInput2(input);
256       setBackgroundFilter->SetMaskValue(labelsToRemove[i]);
257       setBackgroundFilter->SetOutsideValue(BG);
258       setBackgroundFilter->Update();
259       working_image = setBackgroundFilter->GetOutput();
260     }
261     return working_image;
262   }
263   //--------------------------------------------------------------------
264
265
266   //--------------------------------------------------------------------
267   template<class ImageType>
268   typename ImageType::Pointer
269   KeepLabels(const ImageType * input, 
270              typename ImageType::PixelType BG, 
271              typename ImageType::PixelType FG, 
272              typename ImageType::PixelType firstKeep, 
273              typename ImageType::PixelType lastKeep, 
274              bool useLastKeep) {
275     typedef itk::BinaryThresholdImageFilter<ImageType, ImageType> BinarizeFilterType; 
276     typename BinarizeFilterType::Pointer binarizeFilter = BinarizeFilterType::New();
277     binarizeFilter->SetInput(input);
278     binarizeFilter->SetLowerThreshold(firstKeep);
279     if (useLastKeep) binarizeFilter->SetUpperThreshold(lastKeep);
280     binarizeFilter->SetInsideValue(FG);
281     binarizeFilter->SetOutsideValue(BG);
282     binarizeFilter->Update();
283     return binarizeFilter->GetOutput();
284   }
285   //--------------------------------------------------------------------
286
287
288   //--------------------------------------------------------------------
289   template<class ImageType>
290   typename ImageType::Pointer
291   LabelizeAndSelectLabels(const ImageType * input,
292                           typename ImageType::PixelType BG, 
293                           typename ImageType::PixelType FG, 
294                           bool isFullyConnected,
295                           int minimalComponentSize,
296                           LabelizeParameters<typename ImageType::PixelType> * param)
297   {
298     typename ImageType::Pointer working_image;
299     working_image = Labelize<ImageType>(input, BG, isFullyConnected, minimalComponentSize);
300     working_image = RemoveLabels<ImageType>(working_image, BG, param->GetLabelsToRemove());
301     working_image = KeepLabels<ImageType>(working_image, 
302                                           BG, FG, 
303                                           param->GetFirstKeep(), 
304                                           param->GetLastKeep(), 
305                                           param->GetUseLastKeep());
306     return working_image;
307   }
308   //--------------------------------------------------------------------
309
310
311   //--------------------------------------------------------------------
312   template<class ImageType>
313   typename ImageType::Pointer
314   ResizeImageLike(const ImageType * input,                       
315                   const itk::ImageBase<ImageType::ImageDimension> * like, 
316                   typename ImageType::PixelType backgroundValue) 
317   {
318     typedef CropLikeImageFilter<ImageType> CropFilterType;
319     typename CropFilterType::Pointer cropFilter = CropFilterType::New();
320     cropFilter->SetInput(input);
321     cropFilter->SetCropLikeImage(like);
322     cropFilter->SetBackgroundValue(backgroundValue);
323     cropFilter->Update();
324     return cropFilter->GetOutput();  
325   }
326   //--------------------------------------------------------------------
327
328
329   //--------------------------------------------------------------------
330   template<class MaskImageType>
331   typename MaskImageType::Pointer
332   SliceBySliceRelativePosition(const MaskImageType * input,
333                                const MaskImageType * object,
334                                int direction, 
335                                double threshold, 
336                                std::string orientation, 
337                                bool uniqueConnectedComponent, 
338                                double spacing, 
339                                bool inverseflag) 
340   {
341     typedef SliceBySliceRelativePositionFilter<MaskImageType> SliceRelPosFilterType;
342     typename SliceRelPosFilterType::Pointer sliceRelPosFilter = SliceRelPosFilterType::New();
343     sliceRelPosFilter->VerboseStepFlagOff();
344     sliceRelPosFilter->WriteStepFlagOff();
345     sliceRelPosFilter->SetInput(input);
346     sliceRelPosFilter->SetInputObject(object);
347     sliceRelPosFilter->SetDirection(direction);
348     sliceRelPosFilter->SetFuzzyThreshold(threshold);
349     sliceRelPosFilter->AddOrientationTypeString(orientation);
350     sliceRelPosFilter->SetIntermediateSpacingFlag((spacing != -1));
351     sliceRelPosFilter->SetIntermediateSpacing(spacing);
352     sliceRelPosFilter->SetUniqueConnectedComponentBySlice(uniqueConnectedComponent);
353     sliceRelPosFilter->SetInverseOrientationFlag(inverseflag);
354     //  sliceRelPosFilter->SetAutoCropFlag(true); ??
355     sliceRelPosFilter->Update();
356     return sliceRelPosFilter->GetOutput();
357   }
358   //--------------------------------------------------------------------
359
360   //--------------------------------------------------------------------
361   template<class ImageType>
362   bool
363   FindExtremaPointInAGivenDirection(const ImageType * input, 
364                                     typename ImageType::PixelType bg, 
365                                     int direction, bool opposite, 
366                                     typename ImageType::PointType & point)
367   {
368     typename ImageType::PointType dummy;
369     return FindExtremaPointInAGivenDirection(input, bg, direction, 
370                                              opposite, dummy, 0, point);
371   }
372   //--------------------------------------------------------------------
373
374   //--------------------------------------------------------------------
375   template<class ImageType>
376   bool
377   FindExtremaPointInAGivenDirection(const ImageType * input, 
378                                     typename ImageType::PixelType bg, 
379                                     int direction, bool opposite, 
380                                     typename ImageType::PointType refpoint,
381                                     double distanceMax, 
382                                     typename ImageType::PointType & point)
383   {
384     /*
385       loop over input pixels, store the index in the fg that is max
386       according to the given direction. 
387     */
388     typedef itk::ImageRegionConstIteratorWithIndex<ImageType> IteratorType;
389     IteratorType iter(input, input->GetLargestPossibleRegion());
390     iter.GoToBegin();
391     typename ImageType::IndexType max = input->GetLargestPossibleRegion().GetIndex();
392     if (opposite) max = max+input->GetLargestPossibleRegion().GetSize();
393     bool found=false;
394     while (!iter.IsAtEnd()) {
395       if (iter.Get() != bg) {
396         bool test = iter.GetIndex()[direction] >  max[direction];
397         if (opposite) test = !test;
398         if (test) {
399           typename ImageType::PointType p;
400           input->TransformIndexToPhysicalPoint(iter.GetIndex(), p);
401           if ((distanceMax==0) || (p.EuclideanDistanceTo(refpoint) < distanceMax)) {
402             max = iter.GetIndex();
403             found = true;
404           }
405         }
406       }
407       ++iter;
408     }
409     if (!found) return false;
410     input->TransformIndexToPhysicalPoint(max, point);
411     return true;
412   }
413   //--------------------------------------------------------------------
414
415
416   //--------------------------------------------------------------------
417   template<class ImageType>
418   typename ImageType::Pointer
419   CropImageAbove(const ImageType * image, 
420                  int dim, double min, bool autoCrop,
421                  typename ImageType::PixelType BG) 
422   {
423     return CropImageAlongOneAxis<ImageType>(image, dim, 
424                                             image->GetOrigin()[dim], 
425                                             min,
426                                             autoCrop, BG);
427   }
428   //--------------------------------------------------------------------
429
430
431   //--------------------------------------------------------------------
432   template<class ImageType>
433   typename ImageType::Pointer
434   CropImageBelow(const ImageType * image, 
435                  int dim, double max, bool autoCrop,
436                  typename ImageType::PixelType BG) 
437   {
438     typename ImageType::PointType p;
439     image->TransformIndexToPhysicalPoint(image->GetLargestPossibleRegion().GetIndex()+
440                                          image->GetLargestPossibleRegion().GetSize(), p);
441     return CropImageAlongOneAxis<ImageType>(image, dim, max, p[dim], autoCrop, BG);
442   }
443   //--------------------------------------------------------------------
444
445
446   //--------------------------------------------------------------------
447   template<class ImageType>
448   typename ImageType::Pointer
449   CropImageAlongOneAxis(const ImageType * image, 
450                         int dim, double min, double max, 
451                         bool autoCrop, typename ImageType::PixelType BG) 
452   {
453     // Compute region size
454     typename ImageType::RegionType region;
455     typename ImageType::SizeType size = image->GetLargestPossibleRegion().GetSize();
456     typename ImageType::PointType p = image->GetOrigin();
457     p[dim] = min;
458     typename ImageType::IndexType start;
459     image->TransformPhysicalPointToIndex(p, start);
460     p[dim] = max;
461     typename ImageType::IndexType end;
462     image->TransformPhysicalPointToIndex(p, end);
463     size[dim] = fabs(end[dim]-start[dim]);
464     region.SetIndex(start);
465     region.SetSize(size);
466   
467     // Perform Crop
468     typedef itk::RegionOfInterestImageFilter<ImageType, ImageType> CropFilterType;
469     typename CropFilterType::Pointer cropFilter = CropFilterType::New();
470     cropFilter->SetInput(image);
471     cropFilter->SetRegionOfInterest(region);
472     cropFilter->Update();
473     typename ImageType::Pointer result = cropFilter->GetOutput();
474   
475     // Auto Crop
476     if (autoCrop) {
477       result = AutoCrop<ImageType>(result, BG);
478     }
479     return result;
480   }
481   //--------------------------------------------------------------------
482
483
484   //--------------------------------------------------------------------
485   template<class ImageType>
486   void
487   ComputeCentroids(const ImageType * image, 
488                    typename ImageType::PixelType BG, 
489                    std::vector<typename ImageType::PointType> & centroids) 
490   {
491     typedef long LabelType;
492     static const unsigned int Dim = ImageType::ImageDimension;
493     typedef itk::ShapeLabelObject< LabelType, Dim > LabelObjectType;
494     typedef itk::LabelMap< LabelObjectType > LabelMapType;
495     typedef itk::LabelImageToLabelMapFilter<ImageType, LabelMapType> ImageToMapFilterType;
496     typename ImageToMapFilterType::Pointer imageToLabelFilter = ImageToMapFilterType::New(); 
497     typedef itk::ShapeLabelMapFilter<LabelMapType, ImageType> ShapeFilterType; 
498     typename ShapeFilterType::Pointer statFilter = ShapeFilterType::New();
499     imageToLabelFilter->SetBackgroundValue(BG);
500     imageToLabelFilter->SetInput(image);
501     statFilter->SetInput(imageToLabelFilter->GetOutput());
502     statFilter->Update();
503     typename LabelMapType::Pointer labelMap = statFilter->GetOutput();
504
505     centroids.clear();
506     typename ImageType::PointType dummy;
507     centroids.push_back(dummy); // label 0 -> no centroid, use dummy point
508     for(uint i=1; i<labelMap->GetNumberOfLabelObjects()+1; i++) {
509       centroids.push_back(labelMap->GetLabelObject(i)->GetCentroid());
510     } 
511   }
512   //--------------------------------------------------------------------
513
514
515   //--------------------------------------------------------------------
516   template<class ImageType>
517   void
518   ExtractSlices(const ImageType * image, int direction, 
519                 std::vector<typename itk::Image<typename ImageType::PixelType, 
520                                                 ImageType::ImageDimension-1>::Pointer > & slices) 
521   {
522     typedef ExtractSliceFilter<ImageType> ExtractSliceFilterType;
523     typedef typename ExtractSliceFilterType::SliceType SliceType;
524     typename ExtractSliceFilterType::Pointer 
525       extractSliceFilter = ExtractSliceFilterType::New();
526     extractSliceFilter->SetInput(image);
527     extractSliceFilter->SetDirection(direction);
528     extractSliceFilter->Update();
529     extractSliceFilter->GetOutputSlices(slices);
530   }
531   //--------------------------------------------------------------------
532
533
534   //--------------------------------------------------------------------
535   template<class ImageType>
536   typename ImageType::Pointer
537   JoinSlices(std::vector<typename itk::Image<typename ImageType::PixelType, 
538                                              ImageType::ImageDimension-1>::Pointer > & slices, 
539              const ImageType * input, 
540              int direction) {
541     typedef typename itk::Image<typename ImageType::PixelType, ImageType::ImageDimension-1> SliceType;
542     typedef itk::JoinSeriesImageFilter<SliceType, ImageType> JoinSeriesFilterType;
543     typename JoinSeriesFilterType::Pointer joinFilter = JoinSeriesFilterType::New();
544     joinFilter->SetOrigin(input->GetOrigin()[direction]);
545     joinFilter->SetSpacing(input->GetSpacing()[direction]);
546     for(unsigned int i=0; i<slices.size(); i++) {
547       joinFilter->PushBackInput(slices[i]);
548     }
549     joinFilter->Update();
550     return joinFilter->GetOutput();
551   }
552   //--------------------------------------------------------------------
553
554
555   //--------------------------------------------------------------------
556   template<class ImageType>
557   void
558   PointsUtils<ImageType>::Convert2DTo3D(const PointType2D & p2D, 
559                                         const ImageType * image, 
560                                         const int slice, 
561                                         PointType3D & p3D)  
562   {
563     IndexType3D index3D;
564     index3D[0] = index3D[1] = 0;
565     index3D[2] = image->GetLargestPossibleRegion().GetIndex()[2]+slice;
566     image->TransformIndexToPhysicalPoint(index3D, p3D);
567     p3D[0] = p2D[0]; 
568     p3D[1] = p2D[1];
569     //  p3D[2] = p[2];//(image->GetLargestPossibleRegion().GetIndex()[2]+slice)*image->GetSpacing()[2] 
570     //    + image->GetOrigin()[2];
571   }
572   //--------------------------------------------------------------------
573
574
575   //--------------------------------------------------------------------
576   template<class ImageType>
577   void 
578   PointsUtils<ImageType>::Convert2DTo3DList(const MapPoint2DType & map, 
579                                             const ImageType * image, 
580                                             VectorPoint3DType & list)
581   {
582     typename MapPoint2DType::const_iterator iter = map.begin();
583     while (iter != map.end()) {
584       PointType3D p;
585       Convert2DTo3D(iter->second, image, iter->first, p);
586       list.push_back(p);
587       ++iter;
588     }
589   }
590   //--------------------------------------------------------------------
591
592   //--------------------------------------------------------------------
593   template<class ImageType>
594   void 
595   WriteListOfLandmarks(std::vector<typename ImageType::PointType> points, 
596                        std::string filename)
597   {
598     std::ofstream os; 
599     openFileForWriting(os, filename); 
600     os << "LANDMARKS1" << std::endl;  
601     for(uint i=0; i<points.size(); i++) {
602       const typename ImageType::PointType & p = points[i];
603       // Write it in the file
604       os << i << " " << p[0] << " " << p[1] << " " << p[2] << " 0 0 " << std::endl;
605     }
606     os.close();
607   }
608   //--------------------------------------------------------------------
609
610
611   //--------------------------------------------------------------------
612   template<class ImageType>
613   typename ImageType::Pointer 
614   Dilate(const ImageType * image, double radiusInMM,               
615          typename ImageType::PixelType BG,
616          typename ImageType::PixelType FG,  
617          bool extendSupport)
618   {
619     typename ImageType::SizeType r;
620     for(uint i=0; i<ImageType::ImageDimension; i++) 
621       r[i] = (uint)lrint(radiusInMM/image->GetSpacing()[i]);
622     return Dilate<ImageType>(image, r, BG, FG, extendSupport);
623   }
624   //--------------------------------------------------------------------
625
626
627   //--------------------------------------------------------------------
628   template<class ImageType>
629   typename ImageType::Pointer 
630   Dilate(const ImageType * image, typename ImageType::PointType radiusInMM, 
631          typename ImageType::PixelType BG, 
632          typename ImageType::PixelType FG, 
633          bool extendSupport)
634   {
635     typename ImageType::SizeType r;
636     for(uint i=0; i<ImageType::ImageDimension; i++) 
637       r[i] = (uint)lrint(radiusInMM[i]/image->GetSpacing()[i]);
638     return Dilate<ImageType>(image, r, BG, FG, extendSupport);
639   }
640   //--------------------------------------------------------------------
641
642
643   //--------------------------------------------------------------------
644   template<class ImageType>
645   typename ImageType::Pointer 
646   Dilate(const ImageType * image, typename ImageType::SizeType radius, 
647          typename ImageType::PixelType BG, 
648          typename ImageType::PixelType FG, 
649          bool extendSupport)
650   {
651     // Create kernel for dilatation
652     typedef itk::BinaryBallStructuringElement<typename ImageType::PixelType, 
653                                               ImageType::ImageDimension> KernelType;
654     KernelType structuringElement;
655     structuringElement.SetRadius(radius);
656     structuringElement.CreateStructuringElement();
657
658     typename ImageType::Pointer output;
659     if (extendSupport) {
660       typedef itk::ConstantPadImageFilter<ImageType, ImageType> PadFilterType;
661       typename PadFilterType::Pointer padFilter = PadFilterType::New();
662       padFilter->SetInput(image);
663       typename ImageType::SizeType lower;
664       typename ImageType::SizeType upper;
665       for(uint i=0; i<3; i++) {
666         lower[i] = upper[i] = 2*(radius[i]+1);
667       }
668       padFilter->SetPadLowerBound(lower);
669       padFilter->SetPadUpperBound(upper);
670       padFilter->Update();
671       output = padFilter->GetOutput();
672     }
673
674     // Dilate  filter
675     typedef itk::BinaryDilateImageFilter<ImageType, ImageType , KernelType> DilateFilterType;
676     typename DilateFilterType::Pointer dilateFilter = DilateFilterType::New();
677     dilateFilter->SetBackgroundValue(BG);
678     dilateFilter->SetForegroundValue(FG);
679     dilateFilter->SetBoundaryToForeground(false);
680     dilateFilter->SetKernel(structuringElement);
681     dilateFilter->SetInput(output);
682     dilateFilter->Update();
683     return dilateFilter->GetOutput();
684   }
685   //--------------------------------------------------------------------
686
687
688   //--------------------------------------------------------------------
689   template<class ValueType, class VectorType>
690   void ConvertOption(std::string optionName, uint given, 
691                      ValueType * values, VectorType & p, 
692                      uint dim, bool required) 
693   {
694     if (required && (given == 0)) {
695       clitkExceptionMacro("The option --" << optionName << " must be set and have 1 or " 
696                           << dim << " values.");
697     }
698     if (given == 1) {
699       for(uint i=0; i<dim; i++) p[i] = values[0];
700       return;
701     }
702     if (given == dim) {
703       for(uint i=0; i<dim; i++) p[i] = values[i];
704       return;
705     }
706     if (given == 0) return;
707     clitkExceptionMacro("The option --" << optionName << " must have 1 or " 
708                         << dim << " values.");
709   }
710   //--------------------------------------------------------------------
711
712
713   //--------------------------------------------------------------------
714   /*
715     http://www.gamedev.net/community/forums/topic.asp?topic_id=542870
716     Assuming the points are (Ax,Ay) (Bx,By) and (Cx,Cy), you need to compute:
717     (Bx - Ax) * (Cy - Ay) - (By - Ay) * (Cx - Ax)
718     This will equal zero if the point C is on the line formed by
719     points A and B, and will have a different sign depending on the
720     side. Which side this is depends on the orientation of your (x,y)
721     coordinates, but you can plug test values for A,B and C into this
722     formula to determine whether negative values are to the left or to
723     the right.
724     => to accelerate, start with formula, when change sign -> stop and fill
725
726     offsetToKeep = is used to determine which side of the line we
727     keep. The point along the mainDirection but 'offsetToKeep' mm away
728     is kept.
729   
730   */
731   template<class ImageType>
732   void 
733   SliceBySliceSetBackgroundFromLineSeparation(ImageType * input, 
734                                               std::vector<typename ImageType::PointType> & lA, 
735                                               std::vector<typename ImageType::PointType> & lB, 
736                                               typename ImageType::PixelType BG, 
737                                               int mainDirection, 
738                                               double offsetToKeep)
739   {
740     typedef itk::ImageSliceIteratorWithIndex<ImageType> SliceIteratorType;
741     SliceIteratorType siter = SliceIteratorType(input, 
742                                                 input->GetLargestPossibleRegion());
743     siter.SetFirstDirection(0);
744     siter.SetSecondDirection(1);
745     siter.GoToBegin();
746     uint i=0;
747     typename ImageType::PointType A;
748     typename ImageType::PointType B;
749     typename ImageType::PointType C;
750     assert(lA.size() == lB.size());
751     while ((i<lA.size()) && (!siter.IsAtEnd())) {
752       // Check that the current slice correspond to the current point
753       input->TransformIndexToPhysicalPoint(siter.GetIndex(), C);
754       // DD(C);
755       // DD(i);
756       // DD(lA[i]);
757       if ((fabs(C[2] - lA[i][2]))>0.01) { // is !equal with a tolerance of 0.01 mm
758       }
759       else {
760         // Define A,B,C points
761         A = lA[i];
762         B = lB[i];
763         C = A;
764         // DD(A);
765         // DD(B);
766         // DD(C);
767       
768         // Check that the line is not a point (A=B)
769         bool p = (A[0] == B[0]) && (A[1] == B[1]);
770       
771         if (!p) {
772           C[mainDirection] += offsetToKeep; // I know I must keep this point
773           double s = (B[0] - A[0]) * (C[1] - A[1]) - (B[1] - A[1]) * (C[0] - A[0]);
774           bool isPositive = s<0;
775           while (!siter.IsAtEndOfSlice()) {
776             while (!siter.IsAtEndOfLine()) {
777               // Very slow, I know ... but image should be very small
778               input->TransformIndexToPhysicalPoint(siter.GetIndex(), C);
779               double s = (B[0] - A[0]) * (C[1] - A[1]) - (B[1] - A[1]) * (C[0] - A[0]);
780               if (s == 0) siter.Set(BG); // on the line, we decide to remove
781               if (isPositive) {
782                 if (s > 0) siter.Set(BG);
783               }
784               else {
785                 if (s < 0) siter.Set(BG); 
786               }
787               ++siter;
788             }
789             siter.NextLine();
790           } // end loop slice
791         }      
792
793         ++i;
794       } // End of current slice
795       siter.NextSlice();
796     }
797   }                                                   
798   //--------------------------------------------------------------------
799
800   //--------------------------------------------------------------------
801   template<class ImageType>
802   void 
803   AndNot(ImageType * input, 
804          const ImageType * object, 
805          typename ImageType::PixelType BG)
806   {
807     typename ImageType::Pointer o;
808     bool resized=false;
809     if (!clitk::HaveSameSizeAndSpacing<ImageType, ImageType>(input, object)) {
810       o = clitk::ResizeImageLike<ImageType>(object, input, BG);
811       resized = true;
812     }
813
814     typedef clitk::BooleanOperatorLabelImageFilter<ImageType> BoolFilterType;
815     typename BoolFilterType::Pointer boolFilter = BoolFilterType::New(); 
816     boolFilter->InPlaceOn();
817     boolFilter->SetInput1(input);
818     if (resized) boolFilter->SetInput2(o);  
819     else boolFilter->SetInput2(object);
820     boolFilter->SetBackgroundValue1(BG);
821     boolFilter->SetBackgroundValue2(BG);
822     boolFilter->SetOperationType(BoolFilterType::AndNot);
823     boolFilter->Update();
824   }
825   //--------------------------------------------------------------------
826
827
828   //--------------------------------------------------------------------
829   template<class ImageType>
830   typename ImageType::Pointer
831   Binarize(const ImageType * input, 
832            typename ImageType::PixelType lower, 
833            typename ImageType::PixelType upper, 
834            typename ImageType::PixelType BG=0,
835            typename ImageType::PixelType FG=1) 
836   {
837     typedef itk::BinaryThresholdImageFilter<ImageType, ImageType> BinaryThresholdFilterType;
838     typename BinaryThresholdFilterType::Pointer binarizeFilter = BinaryThresholdFilterType::New();
839     binarizeFilter->SetInput(input);
840     binarizeFilter->SetLowerThreshold(lower);
841     binarizeFilter->SetUpperThreshold(upper);
842     binarizeFilter->SetInsideValue(FG);
843     binarizeFilter->SetOutsideValue(BG);
844     binarizeFilter->Update();
845     return binarizeFilter->GetOutput();
846   }
847   //--------------------------------------------------------------------
848
849
850   //--------------------------------------------------------------------
851   template<class ImageType>
852   void
853   GetMinMaxPointPosition(const ImageType * input, 
854                          typename ImageType::PointType & min,
855                          typename ImageType::PointType & max) 
856   {
857     typename ImageType::IndexType index = input->GetLargestPossibleRegion().GetIndex();
858     input->TransformIndexToPhysicalPoint(index, min);
859     index = index+input->GetLargestPossibleRegion().GetSize();
860     input->TransformIndexToPhysicalPoint(index, max);
861   }
862   //--------------------------------------------------------------------
863
864
865   //--------------------------------------------------------------------
866   template<class ImageType>
867   typename ImageType::PointType
868   FindExtremaPointInAGivenLine(const ImageType * input, 
869                                int dimension, 
870                                bool inverse, 
871                                typename ImageType::PointType p, 
872                                typename ImageType::PixelType BG, 
873                                double distanceMax) 
874   {
875     // Which direction ?  Increasing or decreasing.
876     int d=1;
877     if (inverse) d=-1;
878   
879     // Transform to pixel index
880     typename ImageType::IndexType index;
881     input->TransformPhysicalPointToIndex(p, index);
882
883     // Loop while inside the mask;
884     while (input->GetPixel(index) != BG) {
885       index[dimension] += d;
886     }
887
888     // Transform back to Physical Units
889     typename ImageType::PointType result;
890     input->TransformIndexToPhysicalPoint(index, result);
891
892     // Check that is is not too far away
893     double distance = p.EuclideanDistanceTo(result);
894     if (distance > distanceMax) {
895       result = p; // Get back to initial value
896     }
897
898     return result;
899   }
900   //--------------------------------------------------------------------
901
902
903   //--------------------------------------------------------------------
904   template<class PointType>
905   bool
906   IsOnTheSameLineSide(PointType C, PointType A, PointType B, PointType like) 
907   {
908     // Look at the position of point 'like' according to the AB line
909     double s = (B[0] - A[0]) * (like[1] - A[1]) - (B[1] - A[1]) * (like[0] - A[0]);
910     bool negative = s<0;
911   
912     // Look the C position
913     s = (B[0] - A[0]) * (C[1] - A[1]) - (B[1] - A[1]) * (C[0] - A[0]);
914
915     if (negative && (s<=0)) return true;
916     if (!negative && (s>=0)) return true;
917     return false;
918   }
919   //--------------------------------------------------------------------
920
921
922 } // end of namespace
923