1 /*=========================================================================
4 Module: $RCSfile: gdcmPixelReadConvert.cxx,v $
6 Date: $Date: 2006/02/16 20:06:14 $
7 Version: $Revision: 1.110 $
9 Copyright (c) CREATIS (Centre de Recherche et d'Applications en Traitement de
10 l'Image). All rights reserved. See Doc/License.txt or
11 http://www.creatis.insa-lyon.fr/Public/Gdcm/License.html for details.
13 This software is distributed WITHOUT ANY WARRANTY; without even
14 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
15 PURPOSE. See the above copyright notices for more information.
17 =========================================================================*/
19 #include "gdcmPixelReadConvert.h"
20 #include "gdcmDebug.h"
22 #include "gdcmGlobal.h"
24 #include "gdcmDocEntry.h"
25 #include "gdcmRLEFramesInfo.h"
26 #include "gdcmJPEGFragmentsInfo.h"
29 #include <stdio.h> //for sscanf
31 #if defined(__BORLANDC__)
32 #include <mem.h> // for memset
38 //bool ReadMPEGFile (std::ifstream *fp, char *inputdata, size_t lenght);
39 bool gdcm_read_JPEG2000_file (void* raw,
40 char *inputdata, size_t inputlength);
41 //-----------------------------------------------------------------------------
42 #define str2num(str, typeNum) *((typeNum *)(str))
44 //-----------------------------------------------------------------------------
45 // Constructor / Destructor
47 PixelReadConvert::PixelReadConvert()
63 /// Canonical Destructor
64 PixelReadConvert::~PixelReadConvert()
69 //-----------------------------------------------------------------------------
72 * \brief Predicate to know whether the image[s] (once Raw) is RGB.
73 * \note See comments of \ref ConvertHandleColor
75 bool PixelReadConvert::IsRawRGB()
78 || PlanarConfiguration == 2
86 * \brief Gets various usefull informations from the file header
87 * @param file gdcm::File pointer
89 void PixelReadConvert::GrabInformationsFromFile( File *file,
90 FileHelper *fileHelper )
92 // Number of Bits Allocated for storing a Pixel is defaulted to 16
93 // when absent from the file.
94 BitsAllocated = file->GetBitsAllocated();
95 if ( BitsAllocated == 0 )
100 // Number of "Bits Stored", defaulted to number of "Bits Allocated"
101 // when absent from the file.
102 BitsStored = file->GetBitsStored();
103 if ( BitsStored == 0 )
105 BitsStored = BitsAllocated;
108 // High Bit Position, defaulted to "Bits Allocated" - 1
109 HighBitPosition = file->GetHighBitPosition();
110 if ( HighBitPosition == 0 )
112 HighBitPosition = BitsAllocated - 1;
115 XSize = file->GetXSize();
116 YSize = file->GetYSize();
117 ZSize = file->GetZSize();
118 SamplesPerPixel = file->GetSamplesPerPixel();
119 //PixelSize = file->GetPixelSize(); Useless
120 PixelSign = file->IsSignedPixelData();
121 SwapCode = file->GetSwapCode();
123 IsPrivateGETransferSyntax = IsMPEG
124 = IsJPEG2000 = IsJPEGLS = IsJPEGLossy
125 = IsJPEGLossless = IsRLELossless
128 if (! file->IsDicomV3() ) // Should be ACR-NEMA file
134 std::string ts = file->GetTransferSyntax();
137 while (true) // shorter to write than 'if elseif elseif elseif' ...
139 // mind the order : check the most usual first.
140 if( IsRaw = Global::GetTS()->GetSpecialTransferSyntax(ts) == TS::ExplicitVRLittleEndian) break;
141 if( IsRaw = Global::GetTS()->GetSpecialTransferSyntax(ts) == TS::ImplicitVRLittleEndian ) break;
142 if( IsRaw = Global::GetTS()->GetSpecialTransferSyntax(ts) == TS::ExplicitVRBigEndian) break;
143 if( IsRaw = Global::GetTS()->GetSpecialTransferSyntax(ts) == TS::ImplicitVRBigEndianPrivateGE) break;
144 // DeflatedExplicitVRLittleEndian syntax means the whole Dataset (Header + Pixels) is compressed !
145 // Not dealt with ! (Parser hangs)
146 //if( IsRaw = Global::GetTS()->GetSpecialTransferSyntax(ts) == TS::DeflatedExplicitVRLittleEndian) break;
149 // cache whether this is a strange GE transfer syntax (which uses
150 // a little endian transfer syntax for the header and a big endian
151 // transfer syntax for the pixel data).
152 IsPrivateGETransferSyntax =
153 ( Global::GetTS()->GetSpecialTransferSyntax(ts) == TS::ImplicitVRBigEndianPrivateGE );
155 IsMPEG = IsJPEG2000 = IsJPEGLS = IsJPEGLossy = IsJPEGLossless = IsRLELossless = false;
160 // mind the order : check the most usual first.
161 if( IsJPEGLossy = Global::GetTS()->IsJPEGLossy(ts) ) break;
162 if( IsJPEGLossless = Global::GetTS()->IsJPEGLossless(ts) ) break;
163 if( IsRLELossless = Global::GetTS()->IsRLELossless(ts) ) break;
164 if( IsJPEG2000 = Global::GetTS()->IsJPEG2000(ts) ) break;
165 if( IsMPEG = Global::GetTS()->IsMPEG(ts) ) break;
166 if( IsJPEGLS = Global::GetTS()->IsJPEGLS(ts) ) break;
167 // DeflatedExplicitVRLittleEndian is considered as 'Unexpected' (we don't know yet haow to process !)
168 gdcmWarningMacro("Unexpected Transfer Syntax :[" << ts << "]");
174 PixelOffset = file->GetPixelOffset();
175 PixelDataLength = file->GetPixelAreaLength();
176 RLEInfo = file->GetRLEInfo();
177 JPEGInfo = file->GetJPEGInfo();
179 IsMonochrome = file->IsMonochrome();
180 IsMonochrome1 = file->IsMonochrome1();
181 IsPaletteColor = file->IsPaletteColor();
182 IsYBRFull = file->IsYBRFull();
184 PlanarConfiguration = file->GetPlanarConfiguration();
186 /////////////////////////////////////////////////////////////////
188 HasLUT = file->HasLUT();
191 // Just in case some access to a File element requires disk access.
192 LutRedDescriptor = file->GetEntryString( 0x0028, 0x1101 );
193 LutGreenDescriptor = file->GetEntryString( 0x0028, 0x1102 );
194 LutBlueDescriptor = file->GetEntryString( 0x0028, 0x1103 );
196 // FIXME : The following comment is probabely meaningless, since LUT are *always*
197 // loaded at parsing time, whatever their length is.
199 // Depending on the value of Document::MAX_SIZE_LOAD_ELEMENT_VALUE
200 // [ refer to invocation of Document::SetMaxSizeLoadEntry() in
201 // Document::Document() ], the loading of the value (content) of a
202 // [Bin|Val]Entry occurence migth have been hindered (read simply NOT
203 // loaded). Hence, we first try to obtain the LUTs data from the file
204 // and when this fails we read the LUTs data directly from disk.
205 // \TODO Reading a [Bin|Val]Entry directly from disk is a kludge.
206 // We should NOT bypass the [Bin|Val]Entry class. Instead
207 // an access to an UNLOADED content of a [Bin|Val]Entry occurence
208 // (e.g. DataEntry::GetBinArea()) should force disk access from
209 // within the [Bin|Val]Entry class itself. The only problem
210 // is that the [Bin|Val]Entry is unaware of the FILE* is was
211 // parsed from. Fix that. FIXME.
214 file->LoadEntryBinArea(0x0028, 0x1201);
215 LutRedData = (uint8_t*)file->GetEntryBinArea( 0x0028, 0x1201 );
218 gdcmWarningMacro("Unable to read Red Palette Color Lookup Table data");
222 file->LoadEntryBinArea(0x0028, 0x1202);
223 LutGreenData = (uint8_t*)file->GetEntryBinArea(0x0028, 0x1202 );
226 gdcmWarningMacro("Unable to read Green Palette Color Lookup Table data");
230 file->LoadEntryBinArea(0x0028, 0x1203);
231 LutBlueData = (uint8_t*)file->GetEntryBinArea( 0x0028, 0x1203 );
234 gdcmWarningMacro("Unable to read Blue Palette Color Lookup Table data");
239 ComputeRawAndRGBSizes();
242 /// \brief Reads from disk and decompresses Pixels
243 bool PixelReadConvert::ReadAndDecompressPixelData( std::ifstream *fp )
245 // ComputeRawAndRGBSizes is already made by
246 // ::GrabInformationsFromfile. So, the structure sizes are
250 //////////////////////////////////////////////////
251 //// First stage: get our hands on the Pixel Data.
254 gdcmWarningMacro( "Unavailable file pointer." );
258 fp->seekg( PixelOffset, std::ios::beg );
259 if ( fp->fail() || fp->eof() )
261 gdcmWarningMacro( "Unable to find PixelOffset in file." );
267 //////////////////////////////////////////////////
269 CallStartMethod(); // for progress bar
270 unsigned int count = 0;
271 unsigned int frameSize;
272 unsigned int bitsAllocated = BitsAllocated;
273 if(bitsAllocated == 12)
275 frameSize = XSize*YSize*SamplesPerPixel*bitsAllocated/8;
277 //// Second stage: read from disk and decompress.
279 if ( BitsAllocated == 12 ) // We suppose 'BitsAllocated' = 12 only exist for uncompressed files
281 ReadAndDecompress12BitsTo16Bits( fp);
285 // This problem can be found when some obvious informations are found
286 // after the field containing the image data. In this case, these
287 // bad data are added to the size of the image (in the PixelDataLength
288 // variable). But RawSize is the right size of the image !
289 if ( PixelDataLength != RawSize )
291 gdcmWarningMacro( "Mismatch between PixelReadConvert : "
292 << PixelDataLength << " and RawSize : " << RawSize );
295 //todo : is it the right patch?
296 char *raw = (char*)Raw;
297 uint32_t remainingLength;
299 unsigned int lengthToRead;
301 if ( PixelDataLength > RawSize )
302 lengthToRead = RawSize;
304 lengthToRead = PixelDataLength;
306 // perform a frame by frame reading
307 remainingLength = lengthToRead;
308 unsigned int nbFrames = lengthToRead / frameSize;
309 for (i=0;i<nbFrames; i++)
311 Progress = (float)(count+1)/(float)nbFrames;
312 fp->read( raw, frameSize);
314 remainingLength -= frameSize;
317 if (remainingLength !=0 )
318 fp->read( raw, remainingLength);
320 if ( fp->fail() || fp->eof())
322 gdcmWarningMacro( "Reading of Raw pixel data failed." );
326 else if ( IsRLELossless )
328 if ( ! RLEInfo->DecompressRLEFile
329 ( fp, Raw, XSize, YSize, ZSize, BitsAllocated ) )
331 gdcmWarningMacro( "RLE decompressor failed." );
337 //gdcmWarningMacro( "Sorry, MPEG not yet taken into account" );
339 // fp has already been seek to start of mpeg
340 //ReadMPEGFile(fp, (char*)Raw, PixelDataLength);
345 // Default case concerns JPEG family
346 if ( ! ReadAndDecompressJPEGFile( fp ) )
348 gdcmWarningMacro( "JPEG decompressor ( ReadAndDecompressJPEGFile()"
349 << " method ) failed." );
354 ////////////////////////////////////////////
355 //// Third stage: twigle the bytes and bits.
356 ConvertReorderEndianity();
357 ConvertReArrangeBits();
358 ConvertFixGreyLevels();
359 if (UserFunction) // user is allowed to Mirror, TopDown, Rotate,...the image
360 UserFunction( Raw, FileInternal);
361 ConvertHandleColor();
366 /// Deletes Pixels Area
367 void PixelReadConvert::Squeeze()
383 * \brief Build the RGB image from the Raw image and the LUTs.
385 bool PixelReadConvert::BuildRGBImage()
389 // The job is already done.
395 // The job can't be done
402 // The job can't be done
406 gdcmDebugMacro( "--> BuildRGBImage" );
412 if ( BitsAllocated <= 8 )
414 uint8_t *localRGB = RGB;
415 for (size_t i = 0; i < RawSize; ++i )
418 *localRGB++ = LutRGBA[j];
419 *localRGB++ = LutRGBA[j+1];
420 *localRGB++ = LutRGBA[j+2];
424 else // deal with 16 bits pixels and 16 bits Palette color
426 uint16_t *localRGB = (uint16_t *)RGB;
427 for (size_t i = 0; i < RawSize/2; ++i )
429 j = ((uint16_t *)Raw)[i] * 4;
430 *localRGB++ = ((uint16_t *)LutRGBA)[j];
431 *localRGB++ = ((uint16_t *)LutRGBA)[j+1];
432 *localRGB++ = ((uint16_t *)LutRGBA)[j+2];
439 //-----------------------------------------------------------------------------
442 //-----------------------------------------------------------------------------
445 * \brief Read from file a 12 bits per pixel image and decompress it
446 * into a 16 bits per pixel image.
448 void PixelReadConvert::ReadAndDecompress12BitsTo16Bits( std::ifstream *fp )
449 throw ( FormatError )
451 int nbPixels = XSize * YSize;
452 uint16_t *localDecompres = (uint16_t*)Raw;
454 for( int p = 0; p < nbPixels; p += 2 )
458 fp->read( (char*)&b0, 1);
459 if ( fp->fail() || fp->eof() )
461 throw FormatError( "PixelReadConvert::ReadAndDecompress12BitsTo16Bits()",
462 "Unfound first block" );
465 fp->read( (char*)&b1, 1 );
466 if ( fp->fail() || fp->eof())
468 throw FormatError( "PixelReadConvert::ReadAndDecompress12BitsTo16Bits()",
469 "Unfound second block" );
472 fp->read( (char*)&b2, 1 );
473 if ( fp->fail() || fp->eof())
475 throw FormatError( "PixelReadConvert::ReadAndDecompress12BitsTo16Bits()",
476 "Unfound second block" );
479 // Two steps are necessary to please VC++
481 // 2 pixels 12bit = [0xABCDEF]
482 // 2 pixels 16bit = [0x0ABD] + [0x0FCE]
484 *localDecompres++ = ((b0 >> 4) << 8) + ((b0 & 0x0f) << 4) + (b1 & 0x0f);
486 *localDecompres++ = ((b2 & 0x0f) << 8) + ((b1 >> 4) << 4) + (b2 >> 4);
488 /// \todo JPR Troubles expected on Big-Endian processors ?
493 * \brief Reads from disk the Pixel Data of JPEG Dicom encapsulated
494 * file and decompress it.
495 * @param fp File Pointer
498 bool PixelReadConvert::ReadAndDecompressJPEGFile( std::ifstream *fp )
502 // make sure this is the right JPEG compression
503 assert( !IsJPEGLossless || !IsJPEGLossy || !IsJPEGLS );
504 // FIXME this is really ugly but it seems I have to load the complete
505 // jpeg2000 stream to use jasper:
506 // I don't think we'll ever be able to deal with multiple fragments properly
508 unsigned long inputlength = 0;
509 JPEGFragment *jpegfrag = JPEGInfo->GetFirstFragment();
512 inputlength += jpegfrag->GetLength();
513 jpegfrag = JPEGInfo->GetNextFragment();
515 gdcmAssertMacro( inputlength != 0);
516 uint8_t *inputdata = new uint8_t[inputlength];
517 char *pinputdata = (char*)inputdata;
518 jpegfrag = JPEGInfo->GetFirstFragment();
521 fp->seekg( jpegfrag->GetOffset(), std::ios::beg);
522 fp->read(pinputdata, jpegfrag->GetLength());
523 pinputdata += jpegfrag->GetLength();
524 jpegfrag = JPEGInfo->GetNextFragment();
526 // Warning the inputdata buffer is delete in the function
527 if ( ! gdcm_read_JPEG2000_file( Raw,
528 (char*)inputdata, inputlength ) )
532 // wow what happen, must be an error
533 gdcmWarningMacro( "gdcm_read_JPEG2000_file() failed ");
538 // make sure this is the right JPEG compression
539 assert( !IsJPEGLossless || !IsJPEGLossy || !IsJPEG2000 );
540 // WARNING : JPEG-LS is NOT the 'classical' Jpeg Lossless :
541 // [JPEG-LS is the basis for new lossless/near-lossless compression
542 // standard for continuous-tone images intended for JPEG2000. The standard
543 // is based on the LOCO-I algorithm (LOw COmplexity LOssless COmpression
544 // for Images) developed at Hewlett-Packard Laboratories]
546 // see http://datacompression.info/JPEGLS.shtml
549 std::cerr << "count:" << JPEGInfo->GetFragmentCount() << std::endl;
550 unsigned long inputlength = 0;
551 JPEGFragment *jpegfrag = JPEGInfo->GetFirstFragment();
554 inputlength += jpegfrag->GetLength();
555 jpegfrag = JPEGInfo->GetNextFragment();
557 gdcmAssertMacro( inputlength != 0);
558 uint8_t *inputdata = new uint8_t[inputlength];
559 char *pinputdata = (char*)inputdata;
560 jpegfrag = JPEGInfo->GetFirstFragment();
563 fp->seekg( jpegfrag->GetOffset(), std::ios::beg);
564 fp->read(pinputdata, jpegfrag->GetLength());
565 pinputdata += jpegfrag->GetLength();
566 jpegfrag = JPEGInfo->GetNextFragment();
569 //fp->read((char*)Raw, PixelDataLength);
571 std::ofstream out("/tmp/jpegls.jpg");
572 out.write((char*)inputdata, inputlength);
577 gdcmWarningMacro( "Sorry, JPEG-LS not yet taken into account" );
578 fp->seekg( JPEGInfo->GetFirstFragment()->GetOffset(), std::ios::beg);
579 // if ( ! gdcm_read_JPEGLS_file( fp,Raw ) )
584 // make sure this is the right JPEG compression
585 assert( !IsJPEGLS || !IsJPEG2000 );
586 // Precompute the offset localRaw will be shifted with
587 int length = XSize * YSize * SamplesPerPixel;
588 int numberBytes = BitsAllocated / 8;
590 JPEGInfo->DecompressFromFile(fp, Raw, BitsStored, numberBytes, length );
596 * \brief Build Red/Green/Blue/Alpha LUT from File when :
597 * - (0028,0004) : Photometric Interpretation == [PALETTE COLOR ]
599 * - (0028,1101),(0028,1102),(0028,1102)
600 * xxx Palette Color Lookup Table Descriptor are found
602 * - (0028,1201),(0028,1202),(0028,1202)
603 * xxx Palette Color Lookup Table Data - are found
604 * \warning does NOT deal with :
605 * - 0028 1100 Gray Lookup Table Descriptor (Retired)
606 * - 0028 1221 Segmented Red Palette Color Lookup Table Data
607 * - 0028 1222 Segmented Green Palette Color Lookup Table Data
608 * - 0028 1223 Segmented Blue Palette Color Lookup Table Data
609 * no known Dicom reader deals with them :-(
610 * @return a RGBA Lookup Table
612 void PixelReadConvert::BuildLUTRGBA()
615 // Note to code reviewers :
616 // The problem is *much more* complicated, since a lot of manufacturers
617 // Don't follow the norm :
618 // have a look at David Clunie's remark at the end of this .cxx file.
625 // http://www.barre.nom.fr/medical/dicom2/limitations.html#Color%20Lookup%20Tables
627 if ( ! IsPaletteColor )
632 if ( LutRedDescriptor == GDCM_UNFOUND
633 || LutGreenDescriptor == GDCM_UNFOUND
634 || LutBlueDescriptor == GDCM_UNFOUND )
636 gdcmWarningMacro( "(At least) a LUT Descriptor is missing" );
640 ////////////////////////////////////////////
641 // Extract the info from the LUT descriptors
642 int lengthR; // Red LUT length in Bytes
643 int debR; // Subscript of the first Lut Value
644 int nbitsR; // Lut item size (in Bits)
645 int nbRead; // nb of items in LUT descriptor (must be = 3)
647 nbRead = sscanf( LutRedDescriptor.c_str(),
649 &lengthR, &debR, &nbitsR );
652 gdcmWarningMacro( "Wrong Red LUT descriptor" );
654 int lengthG; // Green LUT length in Bytes
655 int debG; // Subscript of the first Lut Value
656 int nbitsG; // Lut item size (in Bits)
658 nbRead = sscanf( LutGreenDescriptor.c_str(),
660 &lengthG, &debG, &nbitsG );
663 gdcmWarningMacro( "Wrong Green LUT descriptor" );
666 int lengthB; // Blue LUT length in Bytes
667 int debB; // Subscript of the first Lut Value
668 int nbitsB; // Lut item size (in Bits)
669 nbRead = sscanf( LutRedDescriptor.c_str(),
671 &lengthB, &debB, &nbitsB );
674 gdcmWarningMacro( "Wrong Blue LUT descriptor" );
677 gdcmDebugMacro(" lengthR " << lengthR << " debR "
678 << debR << " nbitsR " << nbitsR);
679 gdcmDebugMacro(" lengthG " << lengthG << " debG "
680 << debG << " nbitsG " << nbitsG);
681 gdcmDebugMacro(" lengthB " << lengthB << " debB "
682 << debB << " nbitsB " << nbitsB);
684 if ( !lengthR ) // if = 2^16, this shall be 0 see : CP-143
686 if ( !lengthG ) // if = 2^16, this shall be 0
688 if ( !lengthB ) // if = 2^16, this shall be 0
691 ////////////////////////////////////////////////////////
693 if ( ( ! LutRedData ) || ( ! LutGreenData ) || ( ! LutBlueData ) )
695 gdcmWarningMacro( "(At least) a LUT is missing" );
699 // -------------------------------------------------------------
701 if ( BitsAllocated <= 8 )
703 // forge the 4 * 8 Bits Red/Green/Blue/Alpha LUT
704 LutRGBA = new uint8_t[ 1024 ]; // 256 * 4 (R, G, B, Alpha)
709 memset( LutRGBA, 0, 1024 );
712 if ( ( nbitsR == 16 ) && ( BitsAllocated == 8 ) )
714 // when LUT item size is different than pixel size
715 mult = 2; // high byte must be = low byte
719 // See PS 3.3-2003 C.11.1.1.2 p 619
723 // if we get a black image, let's just remove the '+1'
724 // from 'i*mult+1' and check again
725 // if it works, we shall have to check the 3 Palettes
726 // to see which byte is ==0 (first one, or second one)
728 // We give up the checking to avoid some (useless ?) overhead
729 // (optimistic asumption)
733 //take "Subscript of the first Lut Value" (debR,debG,debB) into account!
735 //FIXME : +1 : to get 'low value' byte
736 // Trouble expected on Big Endian Processors ?
737 // 16 BIts Per Pixel Palette Color to be swapped?
739 a = LutRGBA + 0 + debR;
740 for( i=0; i < lengthR; ++i )
742 *a = LutRedData[i*mult+1];
746 a = LutRGBA + 1 + debG;
747 for( i=0; i < lengthG; ++i)
749 *a = LutGreenData[i*mult+1];
753 a = LutRGBA + 2 + debB;
754 for(i=0; i < lengthB; ++i)
756 *a = LutBlueData[i*mult+1];
761 for(i=0; i < 256; ++i)
763 *a = 1; // Alpha component
769 // Probabely the same stuff is to be done for 16 Bits Pixels
770 // with 65536 entries LUT ?!?
771 // Still looking for accurate info on the web :-(
773 gdcmWarningMacro( "Sorry Palette Color Lookup Tables not yet dealt with"
774 << " for 16 Bits Per Pixel images" );
776 // forge the 4 * 16 Bits Red/Green/Blue/Alpha LUT
778 LutRGBA = (uint8_t *)new uint16_t[ 65536*4 ]; // 2^16 * 4 (R, G, B, Alpha)
781 memset( LutRGBA, 0, 65536*4*2 ); // 16 bits = 2 bytes ;-)
783 LutItemNumber = 65536;
789 //take "Subscript of the first Lut Value" (debR,debG,debB) into account!
791 a16 = (uint16_t*)LutRGBA + 0 + debR;
792 for( i=0; i < lengthR; ++i )
794 *a16 = ((uint16_t*)LutRedData)[i];
798 a16 = (uint16_t*)LutRGBA + 1 + debG;
799 for( i=0; i < lengthG; ++i)
801 *a16 = ((uint16_t*)LutGreenData)[i];
805 a16 = (uint16_t*)LutRGBA + 2 + debB;
806 for(i=0; i < lengthB; ++i)
808 *a16 = ((uint16_t*)LutBlueData)[i];
812 a16 = (uint16_t*)LutRGBA + 3 ;
813 for(i=0; i < 65536; ++i)
815 *a16 = 1; // Alpha component
818 /* Just to 'see' the LUT, at debug time
819 // Don't remove this commented out code.
821 a16=(uint16_t*)LutRGBA;
822 for (int j=0;j<65536;j++)
824 std::cout << *a16 << " " << *(a16+1) << " "
825 << *(a16+2) << " " << *(a16+3) << std::endl;
833 * \brief Swap the bytes, according to \ref SwapCode.
835 void PixelReadConvert::ConvertSwapZone()
839 // If this file is 'ImplicitVR BigEndian PrivateGE Transfer Syntax',
840 // then the header is in little endian format and the pixel data is in
841 // big endian format. When reading the header, GDCM has already established
842 // a byte swapping code suitable for this machine to read the
843 // header. In TS::ImplicitVRBigEndianPrivateGE, this code will need
844 // to be switched in order to read the pixel data. This must be
845 // done REGARDLESS of the processor endianess!
847 // Example: Assume we are on a little endian machine. When
848 // GDCM reads the header, the header will match the machine
849 // endianess and the swap code will be established as a no-op.
850 // When GDCM reaches the pixel data, it will need to switch the
851 // swap code to do big endian to little endian conversion.
853 // Now, assume we are on a big endian machine. When GDCM reads the
854 // header, the header will be recognized as a different endianess
855 // than the machine endianess, and a swap code will be established
856 // to convert from little endian to big endian. When GDCM readers
857 // the pixel data, the pixel data endianess will now match the
858 // machine endianess. But we currently have a swap code that
859 // converts from little endian to big endian. In this case, we
860 // need to switch the swap code to a no-op.
862 // Therefore, in either case, if the file is in
863 // 'ImplicitVR BigEndian PrivateGE Transfer Syntax', then GDCM needs to switch
864 // the byte swapping code when entering the pixel data.
866 int tempSwapCode = SwapCode;
867 if ( IsPrivateGETransferSyntax )
869 gdcmWarningMacro(" IsPrivateGETransferSyntax found; turn the SwapCode");
870 // PrivateGETransferSyntax only exists for 'true' Dicom images
871 // we assume there is no 'exotic' 32 bits endianess!
872 if (SwapCode == 1234)
876 else if (SwapCode == 4321)
882 if ( BitsAllocated == 16 )
884 uint16_t *im16 = (uint16_t*)Raw;
885 switch( tempSwapCode )
892 for( i = 0; i < RawSize / 2; i++ )
894 im16[i]= (im16[i] >> 8) | (im16[i] << 8 );
898 gdcmWarningMacro("SwapCode value (16 bits) not allowed."
902 else if ( BitsAllocated == 32 )
907 uint32_t *im32 = (uint32_t*)Raw;
908 switch ( tempSwapCode )
913 for( i = 0; i < RawSize / 4; i++ )
915 low = im32[i] & 0x0000ffff; // 4321
916 high = im32[i] >> 16;
917 high = ( high >> 8 ) | ( high << 8 );
918 low = ( low >> 8 ) | ( low << 8 );
920 im32[i] = ( s32 << 16 ) | high;
924 for( i = 0; i < RawSize / 4; i++ )
926 low = im32[i] & 0x0000ffff; // 2143
927 high = im32[i] >> 16;
928 high = ( high >> 8 ) | ( high << 8 );
929 low = ( low >> 8 ) | ( low << 8 );
931 im32[i] = ( s32 << 16 ) | low;
935 for( i = 0; i < RawSize / 4; i++ )
937 low = im32[i] & 0x0000ffff; // 3412
938 high = im32[i] >> 16;
940 im32[i] = ( s32 << 16 ) | high;
944 gdcmWarningMacro("SwapCode value (32 bits) not allowed." << tempSwapCode );
950 * \brief Deal with endianness i.e. re-arange bytes inside the integer
952 void PixelReadConvert::ConvertReorderEndianity()
954 if ( BitsAllocated != 8 )
959 // Special kludge in order to deal with xmedcon broken images:
960 if ( BitsAllocated == 16
961 && BitsStored < BitsAllocated
964 int l = (int)( RawSize / ( BitsAllocated / 8 ) );
965 uint16_t *deb = (uint16_t *)Raw;
966 for(int i = 0; i<l; i++)
968 if ( *deb == 0xffff )
978 * \brief Deal with Grey levels i.e. re-arange them
979 * to have low values = dark, high values = bright
981 void PixelReadConvert::ConvertFixGreyLevels()
986 uint32_t i; // to please M$VC6
991 if ( BitsAllocated == 8 )
993 uint8_t *deb = (uint8_t *)Raw;
994 for (i=0; i<RawSize; i++)
1002 if ( BitsAllocated == 16 )
1005 for (j=0; j<BitsStored-1; j++)
1007 mask = (mask << 1) +1; // will be fff when BitsStored=12
1010 uint16_t *deb = (uint16_t *)Raw;
1011 for (i=0; i<RawSize/2; i++)
1021 if ( BitsAllocated == 8 )
1023 uint8_t smask8 = 255;
1024 uint8_t *deb = (uint8_t *)Raw;
1025 for (i=0; i<RawSize; i++)
1027 *deb = smask8 - *deb;
1032 if ( BitsAllocated == 16 )
1034 uint16_t smask16 = 65535;
1035 uint16_t *deb = (uint16_t *)Raw;
1036 for (i=0; i<RawSize/2; i++)
1038 *deb = smask16 - *deb;
1047 * \brief Re-arrange the bits within the bytes.
1048 * @return Boolean always true
1050 bool PixelReadConvert::ConvertReArrangeBits() throw ( FormatError )
1053 if ( BitsStored != BitsAllocated )
1055 int l = (int)( RawSize / ( BitsAllocated / 8 ) );
1056 if ( BitsAllocated == 16 )
1058 // pmask : to mask the 'unused bits' (may contain overlays)
1059 uint16_t pmask = 0xffff;
1060 pmask = pmask >> ( BitsAllocated - BitsStored );
1062 uint16_t *deb = (uint16_t*)Raw;
1064 if ( !PixelSign ) // Pixels are unsigned
1066 for(int i = 0; i<l; i++)
1068 *deb = (*deb >> (BitsStored - HighBitPosition - 1)) & pmask;
1072 else // Pixels are signed
1074 // smask : to check the 'sign' when BitsStored != BitsAllocated
1075 uint16_t smask = 0x0001;
1076 smask = smask << ( 16 - (BitsAllocated - BitsStored + 1) );
1077 // nmask : to propagate sign bit on negative values
1078 int16_t nmask = (int16_t)0x8000;
1079 nmask = nmask >> ( BitsAllocated - BitsStored - 1 );
1081 for(int i = 0; i<l; i++)
1083 *deb = *deb >> (BitsStored - HighBitPosition - 1);
1086 *deb = *deb | nmask;
1090 *deb = *deb & pmask;
1096 else if ( BitsAllocated == 32 )
1098 // pmask : to mask the 'unused bits' (may contain overlays)
1099 uint32_t pmask = 0xffffffff;
1100 pmask = pmask >> ( BitsAllocated - BitsStored );
1102 uint32_t *deb = (uint32_t*)Raw;
1106 for(int i = 0; i<l; i++)
1108 *deb = (*deb >> (BitsStored - HighBitPosition - 1)) & pmask;
1114 // smask : to check the 'sign' when BitsStored != BitsAllocated
1115 uint32_t smask = 0x00000001;
1116 smask = smask >> ( 32 - (BitsAllocated - BitsStored +1 ));
1117 // nmask : to propagate sign bit on negative values
1118 int32_t nmask = 0x80000000;
1119 nmask = nmask >> ( BitsAllocated - BitsStored -1 );
1121 for(int i = 0; i<l; i++)
1123 *deb = *deb >> (BitsStored - HighBitPosition - 1);
1125 *deb = *deb | nmask;
1127 *deb = *deb & pmask;
1134 gdcmWarningMacro("Weird image (BitsAllocated !=8, 12, 16, 32)");
1135 throw FormatError( "Weird image !?" );
1142 * \brief Convert (Red plane, Green plane, Blue plane) to RGB pixels
1143 * \warning Works on all the frames at a time
1145 void PixelReadConvert::ConvertRGBPlanesToRGBPixels()
1147 gdcmWarningMacro("--> ConvertRGBPlanesToRGBPixels");
1149 uint8_t *localRaw = Raw;
1150 uint8_t *copyRaw = new uint8_t[ RawSize ];
1151 memmove( copyRaw, localRaw, RawSize );
1153 int l = XSize * YSize * ZSize;
1155 uint8_t *a = copyRaw;
1156 uint8_t *b = copyRaw + l;
1157 uint8_t *c = copyRaw + l + l;
1159 for (int j = 0; j < l; j++)
1161 *(localRaw++) = *(a++);
1162 *(localRaw++) = *(b++);
1163 *(localRaw++) = *(c++);
1169 * \brief Convert (cY plane, cB plane, cR plane) to RGB pixels
1170 * \warning Works on all the frames at a time
1172 void PixelReadConvert::ConvertYcBcRPlanesToRGBPixels()
1174 // Remarks for YBR newbees :
1175 // YBR_FULL works very much like RGB, i.e. three samples per pixel,
1176 // just the color space is YCbCr instead of RGB. This is particularly useful
1177 // for doppler ultrasound where most of the image is grayscale
1178 // (i.e. only populates the Y components) and Cb and Cr are mostly zero,
1179 // except for the few patches of color on the image.
1180 // On such images, RLE achieves a compression ratio that is much better
1181 // than the compression ratio on an equivalent RGB image.
1183 gdcmWarningMacro("--> ConvertYcBcRPlanesToRGBPixels");
1185 uint8_t *localRaw = Raw;
1186 uint8_t *copyRaw = new uint8_t[ RawSize ];
1187 memmove( copyRaw, localRaw, RawSize );
1189 // to see the tricks about YBR_FULL, YBR_FULL_422,
1190 // YBR_PARTIAL_422, YBR_ICT, YBR_RCT have a look at :
1191 // ftp://medical.nema.org/medical/dicom/final/sup61_ft.pdf
1192 // and be *very* affraid
1194 int l = XSize * YSize;
1195 int nbFrames = ZSize;
1197 uint8_t *a = copyRaw + 0;
1198 uint8_t *b = copyRaw + l;
1199 uint8_t *c = copyRaw + l+ l;
1202 /// We replaced easy to understand but time consuming floating point
1203 /// computations by the 'well known' integer computation counterpart
1205 /// http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
1206 /// for code optimisation.
1208 for ( int i = 0; i < nbFrames; i++ )
1210 for ( int j = 0; j < l; j++ )
1212 R = 38142 *(*a-16) + 52298 *(*c -128);
1213 G = 38142 *(*a-16) - 26640 *(*c -128) - 12845 *(*b -128);
1214 B = 38142 *(*a-16) + 66093 *(*b -128);
1223 if (R > 255) R = 255;
1224 if (G > 255) G = 255;
1225 if (B > 255) B = 255;
1227 *(localRaw++) = (uint8_t)R;
1228 *(localRaw++) = (uint8_t)G;
1229 *(localRaw++) = (uint8_t)B;
1238 /// \brief Deals with the color decoding i.e. handle:
1239 /// - R, G, B planes (as opposed to RGB pixels)
1240 /// - YBR (various) encodings.
1241 /// - LUT[s] (or "PALETTE COLOR").
1243 void PixelReadConvert::ConvertHandleColor()
1245 //////////////////////////////////
1246 // Deal with the color decoding i.e. handle:
1247 // - R, G, B planes (as opposed to RGB pixels)
1248 // - YBR (various) encodings.
1249 // - LUT[s] (or "PALETTE COLOR").
1251 // The classification in the color decoding schema is based on the blending
1252 // of two Dicom tags values:
1253 // * "Photometric Interpretation" for which we have the cases:
1254 // - [Photo A] MONOCHROME[1|2] pictures,
1255 // - [Photo B] RGB or YBR_FULL_422 (which acts as RGB),
1256 // - [Photo C] YBR_* (with the above exception of YBR_FULL_422)
1257 // - [Photo D] "PALETTE COLOR" which indicates the presence of LUT[s].
1258 // * "Planar Configuration" for which we have the cases:
1259 // - [Planar 0] 0 then Pixels are already RGB
1260 // - [Planar 1] 1 then we have 3 planes : R, G, B,
1261 // - [Planar 2] 2 then we have 1 gray Plane and 3 LUTs
1263 // Now in theory, one could expect some coherence when blending the above
1264 // cases. For example we should not encounter files belonging at the
1265 // time to case [Planar 0] and case [Photo D].
1266 // Alas, this was only theory ! Because in practice some odd (read ill
1267 // formated Dicom) files (e.g. gdcmData/US-PAL-8-10x-echo.dcm) we encounter:
1268 // - "Planar Configuration" = 0,
1269 // - "Photometric Interpretation" = "PALETTE COLOR".
1270 // Hence gdcm will use the folowing "heuristic" in order to be tolerant
1271 // towards Dicom-non-conformant files:
1272 // << whatever the "Planar Configuration" value might be, a
1273 // "Photometric Interpretation" set to "PALETTE COLOR" forces
1274 // a LUT intervention >>
1276 // Now we are left with the following handling of the cases:
1277 // - [Planar 0] OR [Photo A] no color decoding (since respectively
1278 // Pixels are already RGB and monochrome pictures have no color :),
1279 // - [Planar 1] AND [Photo B] handled with ConvertRGBPlanesToRGBPixels()
1280 // - [Planar 1] AND [Photo C] handled with ConvertYcBcRPlanesToRGBPixels()
1281 // - [Planar 2] OR [Photo D] requires LUT intervention.
1283 gdcmDebugMacro("--> ConvertHandleColor "
1284 << "Planar Configuration " << PlanarConfiguration );
1288 // [Planar 2] OR [Photo D]: LUT intervention done outside
1289 gdcmDebugMacro("--> RawRGB : LUT intervention done outside");
1293 if ( PlanarConfiguration == 1 )
1297 // [Planar 1] AND [Photo C] (remember YBR_FULL_422 acts as RGB)
1298 gdcmDebugMacro("--> YBRFull");
1299 ConvertYcBcRPlanesToRGBPixels();
1303 // [Planar 1] AND [Photo C]
1304 gdcmDebugMacro("--> YBRFull");
1305 ConvertRGBPlanesToRGBPixels();
1310 // When planarConf is 0, and RLELossless (forbidden by Dicom norm)
1311 // pixels need to be RGB-fyied anyway
1315 gdcmDebugMacro("--> RLE Lossless");
1316 ConvertRGBPlanesToRGBPixels();
1319 // In *normal *case, when planarConf is 0, pixels are already in RGB
1322 /// Computes the Pixels Size
1323 void PixelReadConvert::ComputeRawAndRGBSizes()
1325 int bitsAllocated = BitsAllocated;
1326 // Number of "Bits Allocated" is fixed to 16 when it's 12, since
1327 // in this case we will expand the image to 16 bits (see
1328 // \ref ReadAndDecompress12BitsTo16Bits() )
1329 if ( BitsAllocated == 12 )
1334 RawSize = XSize * YSize * ZSize
1335 * ( bitsAllocated / 8 )
1339 RGBSize = 3 * RawSize; // works for 8 and 16 bits per Pixel
1347 /// Allocates room for RGB Pixels
1348 void PixelReadConvert::AllocateRGB()
1352 RGB = new uint8_t[RGBSize];
1355 /// Allocates room for RAW Pixels
1356 void PixelReadConvert::AllocateRaw()
1360 Raw = new uint8_t[RawSize];
1363 //-----------------------------------------------------------------------------
1366 * \brief Print self.
1367 * @param indent Indentation string to be prepended during printing.
1368 * @param os Stream to print to.
1370 void PixelReadConvert::Print( std::ostream &os, std::string const &indent )
1373 << "--- Pixel information -------------------------"
1376 << "Pixel Data: offset " << PixelOffset
1377 << " x(" << std::hex << PixelOffset << std::dec
1378 << ") length " << PixelDataLength
1379 << " x(" << std::hex << PixelDataLength << std::dec
1380 << ")" << std::endl;
1382 if ( IsRLELossless )
1386 RLEInfo->Print( os, indent );
1390 gdcmWarningMacro("Set as RLE file but NO RLEinfo present.");
1394 if ( IsJPEG2000 || IsJPEGLossless || IsJPEGLossy || IsJPEGLS )
1398 JPEGInfo->Print( os, indent );
1402 gdcmWarningMacro("Set as JPEG file but NO JPEGinfo present.");
1408 * \brief CallStartMethod
1410 void PixelReadConvert::CallStartMethod()
1414 CommandManager::ExecuteCommand(FH,CMD_STARTPROGRESS);
1418 * \brief CallProgressMethod
1420 void PixelReadConvert::CallProgressMethod()
1422 CommandManager::ExecuteCommand(FH,CMD_PROGRESS);
1426 * \brief CallEndMethod
1428 void PixelReadConvert::CallEndMethod()
1431 CommandManager::ExecuteCommand(FH,CMD_ENDPROGRESS);
1435 //-----------------------------------------------------------------------------
1436 } // end namespace gdcm
1438 // Note to developpers :
1439 // Here is a very detailled post from David Clunie, on the troubles caused
1440 // 'non standard' LUT and LUT description
1441 // We shall have to take it into accound in our code.
1446 Subject: Problem with VOI LUTs in Agfa and Fuji CR and GE DX images, was Re: VOI LUT issues
1447 Date: Sun, 06 Feb 2005 17:13:40 GMT
1448 From: David Clunie <dclunie@dclunie.com>
1449 Reply-To: dclunie@dclunie.com
1450 Newsgroups: comp.protocols.dicom
1451 References: <1107553502.040221.189550@o13g2000cwo.googlegroups.com>
1453 > THE LUT that comes with [my] image claims to be 16-bit, but none of the
1454 > values goes higher than 4095. That being said, though, none of my
1455 > original pixel values goes higher than that, either. I have read
1456 > elsewhere on this group that when that happens you are supposed to
1457 > adjust the LUT. Can someone be more specific? There was a thread from
1458 > 2002 where Marco and David were mentioning doing precisely that.
1465 You have encountered the well known "we know what the standard says but
1466 we are going to ignore it and do what we have been doing for almost
1467 a decade regardless" CR vendor bug. Agfa started this, but they are not
1468 the only vendor doing this now; GE and Fuji may have joined the club.
1470 Sadly, one needs to look at the LUT Data, figure out what the maximum
1471 value actually encoded is, and find the next highest power of 2 (e.g.
1472 212 in this case), to figure out what the range of the data is
1473 supposed to be. I have assumed that if the maximum value in the LUT
1474 data is less than a power of 2 minus 1 (e.g. 0xebc) then the intent
1475 of the vendor was not to use the maximum available grayscale range
1476 of the display (e.g. the maximum is 0xfff in this case). An alternative
1477 would be to scale to the actual maximum rather than a power of two.
1479 Very irritating, and in theory not totally reliable if one really
1480 intended the full 16 bits and only used, say 15, but that is extremely
1481 unlikely since everything would be too dark, and this heuristic
1484 There has never been anything in the standard that describes having
1485 to go through these convolutions. Since the only value in the
1486 standard that describes the bit depth of the LUT values is LUT
1487 Descriptor value 3 and that is (usually) always required to be
1488 either 8 or 16, it mystifies me how the creators' of these images
1489 imagine that the receiver is going to divine the range that is intended. Further, the standard is quite explicit that this 3rd
1490 value defines the range of LUT values, but as far as I am aware, all
1491 the vendors are ignoring the standard and indeed sending a third value
1494 This problem is not confined to CR, and is also seen with DX products.
1496 Typically I have seen:
1498 - Agfa CR, which usually (always ?) sends LUTs, values up to 0x0fff
1499 - Fuji CR, which occasionally send LUTs, values up to 0x03ff
1500 - GE DX, for presentation, which always have LUTs, up to 0x3fff
1502 Swissray, Siemens, Philips, Canon and Kodak never seem to send VOI LUTs
1503 at this point (which is a whole other problem). Note that the presence
1504 or absence of a VOI LUT as opposed to window values may be configurable
1505 on the modality in some cases, and I have just looked at what I happen
1506 to have received from a myriad of sites over whose configuration I have
1507 no control. This may be why the majority of Fuji images have no VOI LUTs,
1508 but a few do (or it may be the Siemens system that these Fuji images went
1509 through that perhaps added it). I do have some test Hologic DX images that
1510 are not from a clinical site that do actually get this right (a value
1511 of 12 for the third value and a max of 0xfff).
1513 Since almost every vendor that I have encountered that encodes LUTs
1514 makes this mistake, perhaps it is time to amend the standard to warn
1515 implementor's of receivers and/or sanction this bad behavior. We have
1516 talked about this in the past in WG 6 but so far everyone has been
1517 reluctant to write into the standard such a comment. Maybe it is time
1518 to try again, since if one is not aware of this problem, one cannot
1519 effectively implement display using VOI LUTs, and there is a vast
1520 installed base to contend with.
1522 I did not check presentation states, in which VOI LUTs could also be
1523 encountered, for the prevalence of this mistake, nor did I look at the
1524 encoding of Modality LUT's, which are unusual. Nor did I check digital
1525 mammography images. I would be interested to hear from anyone who has.
1529 PS. The following older thread in this newsgroup discusses this:
1531 "http://groups-beta.google.com/group/comp.protocols.dicom/browse_frm/t hread/6a033444802a35fc/0f0a9a1e35c1468e?q=voi+lut&_done=%2Fgroup%2Fcom p.protocols.dicom%2Fsearch%3Fgroup%3Dcomp.protocols.dicom%26q%3Dvoi+lu t%26qt_g%3D1%26searchnow%3DSearch+this+group%26&_doneTitle=Back+to+Sea rch&&d#0f0a9a1e35c1468e"
1533 PPS. From a historical perspective, the following may be of interest.
1535 In the original standard in 1993, all that was said about this was a
1536 reference to the corresponding such where Modality LUTs are described
1539 "The third value specifies the number of bits for each entry in the
1540 LUT Data. It shall take the value 8 or 16. The LUT Data shall be stored
1541 in a format equivalent to 8 or 16 bits allocated and high bit equal
1544 Since the high bit hint was not apparently explicit enough, a very
1545 early CP, CP 15 (submitted by Agfa as it happens), replaced this with:
1547 "The third value conveys the range of LUT entry values. It shall take
1548 the value 8 or 16, corresponding with the LUT entry value range of
1551 Note: The third value is not required for describing the
1552 LUT data and is only included for informational usage
1553 and for maintaining compatibility with ACRNEMA 2.0.
1555 The LUT Data contains the LUT entry values."
1557 That is how it read in the 1996, 1998 and 1999 editions.
1559 By the 2000 edition, Supplement 33 that introduced presentation states
1560 extensively reworked this entire section and tried to explain this in
1563 "The output range is from 0 to 2^n-1 where n is the third value of LUT
1564 Descriptor. This range is always unsigned."
1566 and also added a note to spell out what the output range meant in the
1569 "9. The output of the Window Center/Width or VOI LUT transformation
1570 is either implicitly scaled to the full range of the display device
1571 if there is no succeeding transformation defined, or implicitly scaled
1572 to the full input range of the succeeding transformation step (such as
1573 the Presentation LUT), if present. See C.11.6.1."
1575 It still reads this way in the 2004 edition.
1577 Note that LUTs in other applications than the general VOI LUT allow for
1578 values other than 8 or 16 in the third value of LUT descriptor to permit
1579 ranges other than 0 to 255 or 65535.
1581 In addition, the DX Image Module specializes the VOI LUT
1582 attributes as follows, in PS 3.3 section C.8.11.3.1.5 (added in Sup 32):
1584 "The third value specifies the number of bits for each entry in the LUT
1585 Data (analogous to ìbits storedî). It shall be between 10-16. The LUT
1586 Data shall be stored in a format equivalent to 16 ìbits allocatedî and
1587 ìhigh bitî equal to ìbits storedî - 1. The third value conveys the range
1588 of LUT entry values. These unsigned LUT entry values shall range between
1589 0 and 2^n-1, where n is the third value of the LUT Descriptor."
1591 So in the case of the GE DX for presentation images, the third value of
1592 LUT descriptor is allowed to be and probably should be 14 rather than 16.