4 * Copyright (C) 1994-1998, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains the coefficient buffer controller for compression.
9 * This controller is the top level of the JPEG compressor proper.
10 * The coefficient buffer lies between forward-DCT and entropy encoding steps.
13 #define JPEG_INTERNALS
16 #include "jlossy.h" /* Private declarations for lossy codec */
19 /* We use a full-image coefficient buffer when doing Huffman optimization,
20 * and also for writing multiple-scan JPEG files. In all cases, the DCT
21 * step is run during the first pass, and subsequent passes need only read
22 * the buffered coefficients.
24 #ifdef ENTROPY_OPT_SUPPORTED
25 #define FULL_COEF_BUFFER_SUPPORTED
27 #ifdef C_MULTISCAN_FILES_SUPPORTED
28 #define FULL_COEF_BUFFER_SUPPORTED
33 /* Private buffer controller object */
36 JDIMENSION iMCU_row_num; /* iMCU row # within image */
37 JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
38 int MCU_vert_offset; /* counts MCU rows within iMCU row */
39 int MCU_rows_per_iMCU_row; /* number of such rows needed */
41 /* For single-pass compression, it's sufficient to buffer just one MCU
42 * (although this may prove a bit slow in practice). We allocate a
43 * workspace of C_MAX_DATA_UNITS_IN_MCU coefficient blocks, and reuse it for
44 * each MCU constructed and sent. (On 80x86, the workspace is FAR even
45 * though it's not really very big; this is to keep the module interfaces
46 * unchanged when a large coefficient buffer is necessary.)
47 * In multi-pass modes, this array points to the current MCU's blocks
48 * within the virtual arrays.
50 JBLOCKROW MCU_buffer[C_MAX_DATA_UNITS_IN_MCU];
52 /* In multi-pass modes, we need a virtual block array for each component. */
53 jvirt_barray_ptr whole_image[MAX_COMPONENTS];
56 typedef c_coef_controller * c_coef_ptr;
59 /* Forward declarations */
60 METHODDEF(boolean) compress_data
61 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
62 #ifdef FULL_COEF_BUFFER_SUPPORTED
63 METHODDEF(boolean) compress_first_pass
64 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
65 METHODDEF(boolean) compress_output
66 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
71 start_iMCU_row (j_compress_ptr cinfo)
72 /* Reset within-iMCU-row counters for a new row */
74 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
75 c_coef_ptr coef = (c_coef_ptr) lossyc->coef_private;
77 /* In an interleaved scan, an MCU row is the same as an iMCU row.
78 * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
79 * But at the bottom of the image, process only what's left.
81 if (cinfo->comps_in_scan > 1) {
82 coef->MCU_rows_per_iMCU_row = 1;
84 if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
85 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
87 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
91 coef->MCU_vert_offset = 0;
96 * Initialize for a processing pass.
100 start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
102 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
103 c_coef_ptr coef = (c_coef_ptr) lossyc->coef_private;
105 coef->iMCU_row_num = 0;
106 start_iMCU_row(cinfo);
110 if (coef->whole_image[0] != NULL)
111 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
112 lossyc->pub.compress_data = compress_data;
114 #ifdef FULL_COEF_BUFFER_SUPPORTED
115 case JBUF_SAVE_AND_PASS:
116 if (coef->whole_image[0] == NULL)
117 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
118 lossyc->pub.compress_data = compress_first_pass;
120 case JBUF_CRANK_DEST:
121 if (coef->whole_image[0] == NULL)
122 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
123 lossyc->pub.compress_data = compress_output;
127 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
134 * Process some data in the single-pass case.
135 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
136 * per call, ie, v_samp_factor block rows for each component in the image.
137 * Returns TRUE if the iMCU row is completed, FALSE if suspended.
139 * NB: input_buf contains a plane for each component in image,
140 * which we index according to the component's SOF position.
144 compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
146 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
147 c_coef_ptr coef = (c_coef_ptr) lossyc->coef_private;
148 JDIMENSION MCU_col_num; /* index of current MCU within row */
149 JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
150 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
151 int blkn, bi, ci, yindex, yoffset, blockcnt;
152 JDIMENSION ypos, xpos;
153 jpeg_component_info *compptr;
155 /* Loop to write as much as one whole iMCU row */
156 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
158 for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
160 /* Determine where data comes from in input_buf and do the DCT thing.
161 * Each call on forward_DCT processes a horizontal row of DCT blocks
162 * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
163 * sequentially. Dummy blocks at the right or bottom edge are filled in
164 * specially. The data in them does not matter for image reconstruction,
165 * so we fill them with values that will encode to the smallest amount of
166 * data, viz: all zeroes in the AC entries, DC entries equal to previous
167 * block's DC value. (Thanks to Thomas Kinsman for this idea.)
170 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
171 compptr = cinfo->cur_comp_info[ci];
172 blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
173 : compptr->last_col_width;
174 xpos = MCU_col_num * compptr->MCU_sample_width;
175 ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
176 for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
177 if (coef->iMCU_row_num < last_iMCU_row ||
178 yoffset+yindex < compptr->last_row_height) {
179 (*lossyc->fdct_forward_DCT) (cinfo, compptr,
180 input_buf[compptr->component_index],
181 coef->MCU_buffer[blkn],
182 ypos, xpos, (JDIMENSION) blockcnt);
183 if (blockcnt < compptr->MCU_width) {
184 /* Create some dummy blocks at the right edge of the image. */
185 jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
186 (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
187 for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
188 coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
192 /* Create a row of dummy blocks at the bottom of the image. */
193 jzero_far((void FAR *) coef->MCU_buffer[blkn],
194 compptr->MCU_width * SIZEOF(JBLOCK));
195 for (bi = 0; bi < compptr->MCU_width; bi++) {
196 coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
199 blkn += compptr->MCU_width;
203 /* Try to write the MCU. In event of a suspension failure, we will
204 * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
206 if (! (*lossyc->entropy_encode_mcu) (cinfo, coef->MCU_buffer)) {
207 /* Suspension forced; update state counters and exit */
208 coef->MCU_vert_offset = yoffset;
209 coef->mcu_ctr = MCU_col_num;
213 /* Completed an MCU row, but perhaps not an iMCU row */
216 /* Completed the iMCU row, advance counters for next one */
217 coef->iMCU_row_num++;
218 start_iMCU_row(cinfo);
223 #ifdef FULL_COEF_BUFFER_SUPPORTED
226 * Process some data in the first pass of a multi-pass case.
227 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
228 * per call, ie, v_samp_factor block rows for each component in the image.
229 * This amount of data is read from the source buffer, DCT'd and quantized,
230 * and saved into the virtual arrays. We also generate suitable dummy blocks
231 * as needed at the right and lower edges. (The dummy blocks are constructed
232 * in the virtual arrays, which have been padded appropriately.) This makes
233 * it possible for subsequent passes not to worry about real vs. dummy blocks.
235 * We must also emit the data to the entropy encoder. This is conveniently
236 * done by calling compress_output() after we've loaded the current strip
237 * of the virtual arrays.
239 * NB: input_buf contains a plane for each component in image. All
240 * components are DCT'd and loaded into the virtual arrays in this pass.
241 * However, it may be that only a subset of the components are emitted to
242 * the entropy encoder during this first pass; be careful about looking
243 * at the scan-dependent variables (MCU dimensions, etc).
247 compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
249 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
250 c_coef_ptr coef = (c_coef_ptr) lossyc->coef_private;
251 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
252 JDIMENSION blocks_across, MCUs_across, MCUindex;
253 int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
255 jpeg_component_info *compptr;
257 JBLOCKROW thisblockrow, lastblockrow;
259 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
261 /* Align the virtual buffer for this component. */
262 buffer = (*cinfo->mem->access_virt_barray)
263 ((j_common_ptr) cinfo, coef->whole_image[ci],
264 coef->iMCU_row_num * compptr->v_samp_factor,
265 (JDIMENSION) compptr->v_samp_factor, TRUE);
266 /* Count non-dummy DCT block rows in this iMCU row. */
267 if (coef->iMCU_row_num < last_iMCU_row)
268 block_rows = compptr->v_samp_factor;
270 /* NB: can't use last_row_height here, since may not be set! */
271 block_rows = (int) (compptr->height_in_data_units % compptr->v_samp_factor);
272 if (block_rows == 0) block_rows = compptr->v_samp_factor;
274 blocks_across = compptr->width_in_data_units;
275 h_samp_factor = compptr->h_samp_factor;
276 /* Count number of dummy blocks to be added at the right margin. */
277 ndummy = (int) (blocks_across % h_samp_factor);
279 ndummy = h_samp_factor - ndummy;
280 /* Perform DCT for all non-dummy blocks in this iMCU row. Each call
281 * on forward_DCT processes a complete horizontal row of DCT blocks.
283 for (block_row = 0; block_row < block_rows; block_row++) {
284 thisblockrow = buffer[block_row];
285 (*lossyc->fdct_forward_DCT) (cinfo, compptr,
286 input_buf[ci], thisblockrow,
287 (JDIMENSION) (block_row * DCTSIZE),
288 (JDIMENSION) 0, blocks_across);
290 /* Create dummy blocks at the right edge of the image. */
291 thisblockrow += blocks_across; /* => first dummy block */
292 jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
293 lastDC = thisblockrow[-1][0];
294 for (bi = 0; bi < ndummy; bi++) {
295 thisblockrow[bi][0] = lastDC;
299 /* If at end of image, create dummy block rows as needed.
300 * The tricky part here is that within each MCU, we want the DC values
301 * of the dummy blocks to match the last real block's DC value.
302 * This squeezes a few more bytes out of the resulting file...
304 if (coef->iMCU_row_num == last_iMCU_row) {
305 blocks_across += ndummy; /* include lower right corner */
306 MCUs_across = blocks_across / h_samp_factor;
307 for (block_row = block_rows; block_row < compptr->v_samp_factor;
309 thisblockrow = buffer[block_row];
310 lastblockrow = buffer[block_row-1];
311 jzero_far((void FAR *) thisblockrow,
312 (size_t) (blocks_across * SIZEOF(JBLOCK)));
313 for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
314 lastDC = lastblockrow[h_samp_factor-1][0];
315 for (bi = 0; bi < h_samp_factor; bi++) {
316 thisblockrow[bi][0] = lastDC;
318 thisblockrow += h_samp_factor; /* advance to next MCU in row */
319 lastblockrow += h_samp_factor;
324 /* NB: compress_output will increment iMCU_row_num if successful.
325 * A suspension return will result in redoing all the work above next time.
328 /* Emit data to the entropy encoder, sharing code with subsequent passes */
329 return compress_output(cinfo, input_buf);
334 * Process some data in subsequent passes of a multi-pass case.
335 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
336 * per call, ie, v_samp_factor block rows for each component in the scan.
337 * The data is obtained from the virtual arrays and fed to the entropy coder.
338 * Returns TRUE if the iMCU row is completed, FALSE if suspended.
340 * NB: input_buf is ignored; it is likely to be a NULL pointer.
344 compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
346 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
347 c_coef_ptr coef = (c_coef_ptr) lossyc->coef_private;
348 JDIMENSION MCU_col_num; /* index of current MCU within row */
349 int blkn, ci, xindex, yindex, yoffset;
350 JDIMENSION start_col;
351 JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
352 JBLOCKROW buffer_ptr;
353 jpeg_component_info *compptr;
356 /* Align the virtual buffers for the components used in this scan.
357 * NB: during first pass, this is safe only because the buffers will
358 * already be aligned properly, so jmemmgr.c won't need to do any I/O.
360 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
361 compptr = cinfo->cur_comp_info[ci];
362 buffer[ci] = (*cinfo->mem->access_virt_barray)
363 ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
364 coef->iMCU_row_num * compptr->v_samp_factor,
365 (JDIMENSION) compptr->v_samp_factor, FALSE);
368 /* Loop to process one whole iMCU row */
369 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
371 for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
373 /* Construct list of pointers to DCT blocks belonging to this MCU */
374 blkn = 0; /* index of current DCT block within MCU */
375 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
376 compptr = cinfo->cur_comp_info[ci];
377 start_col = MCU_col_num * compptr->MCU_width;
378 for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
379 buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
380 for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
381 coef->MCU_buffer[blkn++] = buffer_ptr++;
385 /* Try to write the MCU. */
386 if (! (*lossyc->entropy_encode_mcu) (cinfo, coef->MCU_buffer)) {
387 /* Suspension forced; update state counters and exit */
388 coef->MCU_vert_offset = yoffset;
389 coef->mcu_ctr = MCU_col_num;
393 /* Completed an MCU row, but perhaps not an iMCU row */
396 /* Completed the iMCU row, advance counters for next one */
397 coef->iMCU_row_num++;
398 start_iMCU_row(cinfo);
402 #endif /* FULL_COEF_BUFFER_SUPPORTED */
406 * Initialize coefficient buffer controller.
410 jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
412 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
416 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
417 SIZEOF(c_coef_controller));
418 lossyc->coef_private = (struct jpeg_c_coef_controller *) coef;
419 lossyc->coef_start_pass = start_pass_coef;
421 /* Create the coefficient buffer. */
422 if (need_full_buffer) {
423 #ifdef FULL_COEF_BUFFER_SUPPORTED
424 /* Allocate a full-image virtual array for each component, */
425 /* padded to a multiple of samp_factor DCT blocks in each direction. */
427 jpeg_component_info *compptr;
429 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
431 coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
432 ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
433 (JDIMENSION) jround_up((long) compptr->width_in_data_units,
434 (long) compptr->h_samp_factor),
435 (JDIMENSION) jround_up((long) compptr->height_in_data_units,
436 (long) compptr->v_samp_factor),
437 (JDIMENSION) compptr->v_samp_factor);
440 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
443 /* We only need a single-MCU buffer. */
448 (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
449 C_MAX_DATA_UNITS_IN_MCU * SIZEOF(JBLOCK));
450 for (i = 0; i < C_MAX_DATA_UNITS_IN_MCU; i++) {
451 coef->MCU_buffer[i] = buffer + i;
453 coef->whole_image[0] = NULL; /* flag for no virtual arrays */