4 * Copyright (C) 1991-1998, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains optional default-setting code for the JPEG compressor.
9 * Applications do not have to use this file, but those that don't use it
10 * must know a lot more about the innards of the JPEG code.
13 #define JPEG_INTERNALS
19 * Quantization table setup routines
23 jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
24 const unsigned int *basic_table,
25 int scale_factor, boolean force_baseline)
26 /* Define a quantization table equal to the basic_table times
27 * a scale factor (given as a percentage).
28 * If force_baseline is TRUE, the computed quantization table entries
29 * are limited to 1..255 for JPEG baseline compatibility.
32 JQUANT_TBL ** qtblptr;
36 /* Safety check to ensure start_compress not called yet. */
37 if (cinfo->global_state != CSTATE_START)
38 ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
40 if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
41 ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
43 qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
46 *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
48 for (i = 0; i < DCTSIZE2; i++) {
49 temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
50 /* limit the values to the valid range */
51 if (temp <= 0L) temp = 1L;
52 if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
53 if (force_baseline && temp > 255L)
54 temp = 255L; /* limit to baseline range if requested */
55 (*qtblptr)->quantval[i] = (UINT16) temp;
58 /* Initialize sent_table FALSE so table will be written to JPEG file. */
59 (*qtblptr)->sent_table = FALSE;
64 jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
65 boolean force_baseline)
66 /* Set or change the 'quality' (quantization) setting, using default tables
67 * and a straight percentage-scaling quality scale. In most cases it's better
68 * to use jpeg_set_quality (below); this entry point is provided for
69 * applications that insist on a linear percentage scaling.
72 /* These are the sample quantization tables given in JPEG spec section K.1.
73 * The spec says that the values given produce "good" quality, and
74 * when divided by 2, "very good" quality.
76 static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
77 16, 11, 10, 16, 24, 40, 51, 61,
78 12, 12, 14, 19, 26, 58, 60, 55,
79 14, 13, 16, 24, 40, 57, 69, 56,
80 14, 17, 22, 29, 51, 87, 80, 62,
81 18, 22, 37, 56, 68, 109, 103, 77,
82 24, 35, 55, 64, 81, 104, 113, 92,
83 49, 64, 78, 87, 103, 121, 120, 101,
84 72, 92, 95, 98, 112, 100, 103, 99
86 static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
87 17, 18, 24, 47, 99, 99, 99, 99,
88 18, 21, 26, 66, 99, 99, 99, 99,
89 24, 26, 56, 99, 99, 99, 99, 99,
90 47, 66, 99, 99, 99, 99, 99, 99,
91 99, 99, 99, 99, 99, 99, 99, 99,
92 99, 99, 99, 99, 99, 99, 99, 99,
93 99, 99, 99, 99, 99, 99, 99, 99,
94 99, 99, 99, 99, 99, 99, 99, 99
97 /* Set up two quantization tables using the specified scaling */
98 jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
99 scale_factor, force_baseline);
100 jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
101 scale_factor, force_baseline);
106 jpeg_quality_scaling (int quality)
107 /* Convert a user-specified quality rating to a percentage scaling factor
108 * for an underlying quantization table, using our recommended scaling curve.
109 * The input 'quality' factor should be 0 (terrible) to 100 (very good).
112 /* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
113 if (quality <= 0) quality = 1;
114 if (quality > 100) quality = 100;
116 /* The basic table is used as-is (scaling 100) for a quality of 50.
117 * Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
118 * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
119 * to make all the table entries 1 (hence, minimum quantization loss).
120 * Qualities 1..50 are converted to scaling percentage 5000/Q.
123 quality = 5000 / quality;
125 quality = 200 - quality*2;
132 jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
133 /* Set or change the 'quality' (quantization) setting, using default tables.
134 * This is the standard quality-adjusting entry point for typical user
135 * interfaces; only those who want detailed control over quantization tables
136 * would use the preceding three routines directly.
139 /* Convert user 0-100 rating to percentage scaling */
140 quality = jpeg_quality_scaling(quality);
142 /* Set up standard quality tables */
143 jpeg_set_linear_quality(cinfo, quality, force_baseline);
148 * Huffman table setup routines
152 add_huff_table (j_compress_ptr cinfo,
153 JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
154 /* Define a Huffman table */
158 if (*htblptr == NULL)
159 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
161 /* Copy the number-of-symbols-of-each-code-length counts */
162 MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
164 /* Validate the counts. We do this here mainly so we can copy the right
165 * number of symbols from the val[] array, without risking marching off
166 * the end of memory. jchuff.c will do a more thorough test later.
169 for (len = 1; len <= 16; len++)
170 nsymbols += bits[len];
171 if (nsymbols < 1 || nsymbols > 256)
172 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
174 MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));
176 /* Initialize sent_table FALSE so table will be written to JPEG file. */
177 (*htblptr)->sent_table = FALSE;
182 std_huff_tables (j_compress_ptr cinfo)
183 /* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
184 /* IMPORTANT: these are only valid for 8-bit data precision! */
186 static const UINT8 bits_dc_luminance[17] =
187 { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
188 static const UINT8 val_dc_luminance[] =
189 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
191 static const UINT8 bits_dc_chrominance[17] =
192 { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
193 static const UINT8 val_dc_chrominance[] =
194 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
196 static const UINT8 bits_ac_luminance[17] =
197 { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
198 static const UINT8 val_ac_luminance[] =
199 { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
200 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
201 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
202 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
203 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
204 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
205 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
206 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
207 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
208 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
209 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
210 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
211 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
212 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
213 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
214 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
215 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
216 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
217 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
218 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
221 static const UINT8 bits_ac_chrominance[17] =
222 { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
223 static const UINT8 val_ac_chrominance[] =
224 { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
225 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
226 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
227 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
228 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
229 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
230 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
231 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
232 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
233 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
234 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
235 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
236 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
237 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
238 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
239 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
240 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
241 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
242 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
243 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
246 add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
247 bits_dc_luminance, val_dc_luminance);
248 add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
249 bits_ac_luminance, val_ac_luminance);
250 add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
251 bits_dc_chrominance, val_dc_chrominance);
252 add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
253 bits_ac_chrominance, val_ac_chrominance);
258 * Default parameter setup for compression.
260 * Applications that don't choose to use this routine must do their
261 * own setup of all these parameters. Alternately, you can call this
262 * to establish defaults and then alter parameters selectively. This
263 * is the recommended approach since, if we add any new parameters,
264 * your code will still work (they'll be set to reasonable defaults).
268 jpeg_set_defaults (j_compress_ptr cinfo)
272 /* Safety check to ensure start_compress not called yet. */
273 if (cinfo->global_state != CSTATE_START)
274 ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
276 /* Allocate comp_info array large enough for maximum component count.
277 * Array is made permanent in case application wants to compress
278 * multiple images at same param settings.
280 if (cinfo->comp_info == NULL)
281 cinfo->comp_info = (jpeg_component_info *)
282 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
283 MAX_COMPONENTS * SIZEOF(jpeg_component_info));
285 /* Initialize everything not dependent on the color space */
287 cinfo->lossless = FALSE;
288 cinfo->data_precision = BITS_IN_JSAMPLE;
289 /* Set up two quantization tables using default quality of 75 */
290 jpeg_set_quality(cinfo, 75, TRUE);
291 /* Set up two Huffman tables */
292 std_huff_tables(cinfo);
294 /* Initialize default arithmetic coding conditioning */
295 for (i = 0; i < NUM_ARITH_TBLS; i++) {
296 cinfo->arith_dc_L[i] = 0;
297 cinfo->arith_dc_U[i] = 1;
298 cinfo->arith_ac_K[i] = 5;
301 /* Default is no multiple-scan output */
302 cinfo->scan_info = NULL;
303 cinfo->num_scans = 0;
305 /* Expect normal source image, not raw downsampled data */
306 cinfo->raw_data_in = FALSE;
308 /* Use Huffman coding, not arithmetic coding, by default */
309 cinfo->arith_code = FALSE;
311 /* By default, don't do extra passes to optimize entropy coding */
312 cinfo->optimize_coding = FALSE;
313 /* The standard Huffman tables are only valid for 8-bit data precision.
314 * If the precision is higher, force optimization on so that usable
315 * tables will be computed. This test can be removed if default tables
316 * are supplied that are valid for the desired precision.
318 if (cinfo->data_precision > 8)
319 cinfo->optimize_coding = TRUE;
321 /* By default, use the simpler non-cosited sampling alignment */
322 cinfo->CCIR601_sampling = FALSE;
324 /* No input smoothing */
325 cinfo->smoothing_factor = 0;
327 /* DCT algorithm preference */
328 cinfo->dct_method = JDCT_DEFAULT;
330 /* No restart markers */
331 cinfo->restart_interval = 0;
332 cinfo->restart_in_rows = 0;
334 /* Fill in default JFIF marker parameters. Note that whether the marker
335 * will actually be written is determined by jpeg_set_colorspace.
337 * By default, the library emits JFIF version code 1.01.
338 * An application that wants to emit JFIF 1.02 extension markers should set
339 * JFIF_minor_version to 2. We could probably get away with just defaulting
340 * to 1.02, but there may still be some decoders in use that will complain
341 * about that; saying 1.01 should minimize compatibility problems.
343 cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
344 cinfo->JFIF_minor_version = 1;
345 cinfo->density_unit = 0; /* Pixel size is unknown by default */
346 cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
347 cinfo->Y_density = 1;
349 /* Choose JPEG colorspace based on input space, set defaults accordingly */
351 jpeg_default_colorspace(cinfo);
356 * Select an appropriate JPEG colorspace for in_color_space.
360 jpeg_default_colorspace (j_compress_ptr cinfo)
363 jpeg_set_colorspace(cinfo, cinfo->in_color_space);
365 switch (cinfo->in_color_space) {
367 jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
370 jpeg_set_colorspace(cinfo, JCS_YCbCr);
373 jpeg_set_colorspace(cinfo, JCS_YCbCr);
376 jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
379 jpeg_set_colorspace(cinfo, JCS_YCCK);
382 jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
385 ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
392 * Set the JPEG colorspace, and choose colorspace-dependent default values.
396 jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
398 jpeg_component_info * compptr;
401 #define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \
402 (compptr = &cinfo->comp_info[index], \
403 compptr->component_id = (id), \
404 compptr->h_samp_factor = (hsamp), \
405 compptr->v_samp_factor = (vsamp), \
406 compptr->quant_tbl_no = (quant), \
407 compptr->dc_tbl_no = (dctbl), \
408 compptr->ac_tbl_no = (actbl) )
410 /* Safety check to ensure start_compress not called yet. */
411 if (cinfo->global_state != CSTATE_START)
412 ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
414 /* For all colorspaces, we use Q and Huff tables 0 for luminance components,
415 * tables 1 for chrominance components.
418 cinfo->jpeg_color_space = colorspace;
420 cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
421 cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
423 switch (colorspace) {
425 cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
426 cinfo->num_components = 1;
427 /* JFIF specifies component ID 1 */
428 SET_COMP(0, 1, 1,1, 0, 0,0);
431 cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
432 cinfo->num_components = 3;
433 SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
434 SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
435 SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
438 cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
439 cinfo->num_components = 3;
440 /* JFIF specifies component IDs 1,2,3 */
441 if (cinfo->lossless) {
442 SET_COMP(0, 1, 1,1, 0, 0,0);
443 SET_COMP(1, 2, 1,1, 1, 1,1);
444 SET_COMP(2, 3, 1,1, 1, 1,1);
446 /* We default to 2x2 subsamples of chrominance */
447 SET_COMP(0, 1, 2,2, 0, 0,0);
448 SET_COMP(1, 2, 1,1, 1, 1,1);
449 SET_COMP(2, 3, 1,1, 1, 1,1);
453 cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
454 cinfo->num_components = 4;
455 SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
456 SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
457 SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
458 SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
461 cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
462 cinfo->num_components = 4;
463 if (cinfo->lossless) {
464 SET_COMP(0, 1, 1,1, 0, 0,0);
465 SET_COMP(1, 2, 1,1, 1, 1,1);
466 SET_COMP(2, 3, 1,1, 1, 1,1);
467 SET_COMP(3, 4, 1,1, 0, 0,0);
469 SET_COMP(0, 1, 2,2, 0, 0,0);
470 SET_COMP(1, 2, 1,1, 1, 1,1);
471 SET_COMP(2, 3, 1,1, 1, 1,1);
472 SET_COMP(3, 4, 2,2, 0, 0,0);
476 cinfo->num_components = cinfo->input_components;
477 if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
478 ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
480 for (ci = 0; ci < cinfo->num_components; ci++) {
481 SET_COMP(ci, ci, 1,1, 0, 0,0);
485 ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
490 #ifdef C_PROGRESSIVE_SUPPORTED
492 LOCAL(jpeg_scan_info *)
493 fill_scans (jpeg_scan_info * scanptr, int ncomps,
494 int Ss, int Se, int Ah, int Al)
495 /* Support routine: generate one scan for each component */
499 for (ci = 0; ci < ncomps; ci++) {
500 scanptr->comps_in_scan = 1;
501 scanptr->component_index[0] = ci;
512 LOCAL(jpeg_scan_info *)
513 fill_a_scan (jpeg_scan_info * scanptr, int ci,
514 int Ss, int Se, int Ah, int Al)
515 /* Support routine: generate one scan for specified component */
517 scanptr->comps_in_scan = 1;
518 scanptr->component_index[0] = ci;
527 LOCAL(jpeg_scan_info *)
528 fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
529 /* Support routine: generate interleaved DC scan if possible, else N scans */
533 if (ncomps <= MAX_COMPS_IN_SCAN) {
534 /* Single interleaved DC scan */
535 scanptr->comps_in_scan = ncomps;
536 for (ci = 0; ci < ncomps; ci++)
537 scanptr->component_index[ci] = ci;
538 scanptr->Ss = scanptr->Se = 0;
543 /* Noninterleaved DC scan for each component */
544 scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
551 * Create a recommended progressive-JPEG script.
552 * cinfo->num_components and cinfo->jpeg_color_space must be correct.
556 jpeg_simple_progression (j_compress_ptr cinfo)
558 int ncomps = cinfo->num_components;
560 jpeg_scan_info * scanptr;
562 /* Safety check to ensure start_compress not called yet. */
563 if (cinfo->global_state != CSTATE_START)
564 ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
566 /* Figure space needed for script. Calculation must match code below! */
567 if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
568 /* Custom script for YCbCr color images. */
571 /* All-purpose script for other color spaces. */
572 if (ncomps > MAX_COMPS_IN_SCAN)
573 nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
575 nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
578 /* Allocate space for script.
579 * We need to put it in the permanent pool in case the application performs
580 * multiple compressions without changing the settings. To avoid a memory
581 * leak if jpeg_simple_progression is called repeatedly for the same JPEG
582 * object, we try to re-use previously allocated space, and we allocate
583 * enough space to handle YCbCr even if initially asked for grayscale.
585 if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
586 cinfo->script_space_size = MAX(nscans, 10);
587 cinfo->script_space = (jpeg_scan_info *)
588 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
589 cinfo->script_space_size * SIZEOF(jpeg_scan_info));
591 scanptr = cinfo->script_space;
592 cinfo->scan_info = scanptr;
593 cinfo->num_scans = nscans;
595 if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
596 /* Custom script for YCbCr color images. */
597 /* Initial DC scan */
598 scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
599 /* Initial AC scan: get some luma data out in a hurry */
600 scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
601 /* Chroma data is too small to be worth expending many scans on */
602 scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
603 scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
604 /* Complete spectral selection for luma AC */
605 scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
606 /* Refine next bit of luma AC */
607 scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
608 /* Finish DC successive approximation */
609 scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
610 /* Finish AC successive approximation */
611 scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
612 scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
613 /* Luma bottom bit comes last since it's usually largest scan */
614 scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
616 /* All-purpose script for other color spaces. */
617 /* Successive approximation first pass */
618 scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
619 scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
620 scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
621 /* Successive approximation second pass */
622 scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
623 /* Successive approximation final pass */
624 scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
625 scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
629 #endif /* C_PROGRESSIVE_SUPPORTED */
632 #ifdef C_LOSSLESS_SUPPORTED
635 * Create a single-entry lossless-JPEG script containing all components.
636 * cinfo->num_components must be correct.
640 jpeg_simple_lossless (j_compress_ptr cinfo, int predictor, int point_transform)
642 int ncomps = cinfo->num_components;
645 jpeg_scan_info * scanptr;
647 /* Safety check to ensure start_compress not called yet. */
648 if (cinfo->global_state != CSTATE_START)
649 ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
651 cinfo->lossless = TRUE;
653 /* Set jpeg_color_space. */
654 jpeg_default_colorspace(cinfo);
656 /* Check to ensure that all components will fit in one scan. */
657 if (cinfo->num_components > MAX_COMPS_IN_SCAN)
658 ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
661 /* Allocate space for script.
662 * We need to put it in the permanent pool in case the application performs
663 * multiple compressions without changing the settings. To avoid a memory
664 * leak if jpeg_simple_lossless is called repeatedly for the same JPEG
665 * object, we try to re-use previously allocated space.
667 if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
668 cinfo->script_space_size = nscans;
669 cinfo->script_space = (jpeg_scan_info *)
670 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
671 cinfo->script_space_size * SIZEOF(jpeg_scan_info));
673 scanptr = cinfo->script_space;
674 cinfo->scan_info = scanptr;
675 cinfo->num_scans = nscans;
677 /* Fill the script. */
678 scanptr->comps_in_scan = ncomps;
679 for (ci = 0; ci < ncomps; ci++)
680 scanptr->component_index[ci] = ci;
681 scanptr->Ss = predictor;
684 scanptr->Al = point_transform;
687 #endif /* C_LOSSLESS_SUPPORTED */