4 * Copyright (C) 1994-1998, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains the inverse-DCT management logic.
9 * This code selects a particular IDCT implementation to be used,
10 * and it performs related housekeeping chores. No code in this file
11 * is executed per IDCT step, only during output pass setup.
13 * Note that the IDCT routines are responsible for performing coefficient
14 * dequantization as well as the IDCT proper. This module sets up the
15 * dequantization multiplier table needed by the IDCT routine.
18 #define JPEG_INTERNALS
21 #include "jlossy.h" /* Private declarations for lossy subsystem */
22 #include "jdct.h" /* Private declarations for DCT subsystem */
26 * The decompressor input side (jdinput.c) saves away the appropriate
27 * quantization table for each component at the start of the first scan
28 * involving that component. (This is necessary in order to correctly
29 * decode files that reuse Q-table slots.)
30 * When we are ready to make an output pass, the saved Q-table is converted
31 * to a multiplier table that will actually be used by the IDCT routine.
32 * The multiplier table contents are IDCT-method-dependent. To support
33 * application changes in IDCT method between scans, we can remake the
34 * multiplier tables if necessary.
35 * In buffered-image mode, the first output pass may occur before any data
36 * has been seen for some components, and thus before their Q-tables have
37 * been saved away. To handle this case, multiplier tables are preset
38 * to zeroes; the result of the IDCT will be a neutral gray level.
42 /* Private subobject for this module */
45 /* This array contains the IDCT method code that each multiplier table
46 * is currently set up for, or -1 if it's not yet set up.
47 * The actual multiplier tables are pointed to by dct_table in the
48 * per-component comp_info structures.
50 int cur_method[MAX_COMPONENTS];
53 typedef idct_controller * idct_ptr;
56 /* Allocated multiplier tables: big enough for any supported variant */
59 ISLOW_MULT_TYPE islow_array[DCTSIZE2];
60 #ifdef DCT_IFAST_SUPPORTED
61 IFAST_MULT_TYPE ifast_array[DCTSIZE2];
63 #ifdef DCT_FLOAT_SUPPORTED
64 FLOAT_MULT_TYPE float_array[DCTSIZE2];
69 /* The current scaled-IDCT routines require ISLOW-style multiplier tables,
70 * so be sure to compile that code if either ISLOW or SCALING is requested.
72 #ifdef DCT_ISLOW_SUPPORTED
73 #define PROVIDE_ISLOW_TABLES
75 #ifdef IDCT_SCALING_SUPPORTED
76 #define PROVIDE_ISLOW_TABLES
82 * Prepare for an output pass.
83 * Here we select the proper IDCT routine for each component and build
84 * a matching multiplier table.
88 start_pass (j_decompress_ptr cinfo)
90 j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec;
91 idct_ptr idct = (idct_ptr) lossyd->idct_private;
93 jpeg_component_info *compptr;
95 inverse_DCT_method_ptr method_ptr = NULL;
98 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
100 /* Select the proper IDCT routine for this component's scaling */
101 switch (compptr->codec_data_unit) {
102 #ifdef IDCT_SCALING_SUPPORTED
104 method_ptr = jpeg_idct_1x1;
105 method = JDCT_ISLOW; /* jidctred uses islow-style table */
108 method_ptr = jpeg_idct_2x2;
109 method = JDCT_ISLOW; /* jidctred uses islow-style table */
112 method_ptr = jpeg_idct_4x4;
113 method = JDCT_ISLOW; /* jidctred uses islow-style table */
117 switch (cinfo->dct_method) {
118 #ifdef DCT_ISLOW_SUPPORTED
120 method_ptr = jpeg_idct_islow;
124 #ifdef DCT_IFAST_SUPPORTED
126 method_ptr = jpeg_idct_ifast;
130 #ifdef DCT_FLOAT_SUPPORTED
132 method_ptr = jpeg_idct_float;
137 ERREXIT(cinfo, JERR_NOT_COMPILED);
142 ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->codec_data_unit);
145 lossyd->inverse_DCT[ci] = method_ptr;
146 /* Create multiplier table from quant table.
147 * However, we can skip this if the component is uninteresting
148 * or if we already built the table. Also, if no quant table
149 * has yet been saved for the component, we leave the
150 * multiplier table all-zero; we'll be reading zeroes from the
151 * coefficient controller's buffer anyway.
153 if (! compptr->component_needed || idct->cur_method[ci] == method)
155 qtbl = compptr->quant_table;
156 if (qtbl == NULL) /* happens if no data yet for component */
158 idct->cur_method[ci] = method;
160 #ifdef PROVIDE_ISLOW_TABLES
163 /* For LL&M IDCT method, multipliers are equal to raw quantization
164 * coefficients, but are stored as ints to ensure access efficiency.
166 ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
167 for (i = 0; i < DCTSIZE2; i++) {
168 ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
173 #ifdef DCT_IFAST_SUPPORTED
176 /* For AA&N IDCT method, multipliers are equal to quantization
177 * coefficients scaled by scalefactor[row]*scalefactor[col], where
179 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
180 * For integer operation, the multiplier table is to be scaled by
183 IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
184 #define CONST_BITS 14
185 static const INT16 aanscales[DCTSIZE2] = {
186 /* precomputed values scaled up by 14 bits */
187 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
188 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
189 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
190 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
191 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
192 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
193 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
194 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
198 for (i = 0; i < DCTSIZE2; i++) {
199 ifmtbl[i] = (IFAST_MULT_TYPE)
200 DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
201 (INT32) aanscales[i]),
202 CONST_BITS-IFAST_SCALE_BITS);
207 #ifdef DCT_FLOAT_SUPPORTED
210 /* For float AA&N IDCT method, multipliers are equal to quantization
211 * coefficients scaled by scalefactor[row]*scalefactor[col], where
213 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
215 FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
217 static const double aanscalefactor[DCTSIZE] = {
218 1.0, 1.387039845, 1.306562965, 1.175875602,
219 1.0, 0.785694958, 0.541196100, 0.275899379
223 for (row = 0; row < DCTSIZE; row++) {
224 for (col = 0; col < DCTSIZE; col++) {
225 fmtbl[i] = (FLOAT_MULT_TYPE)
226 ((double) qtbl->quantval[i] *
227 aanscalefactor[row] * aanscalefactor[col]);
235 ERREXIT(cinfo, JERR_NOT_COMPILED);
243 * Initialize IDCT manager.
247 jinit_inverse_dct (j_decompress_ptr cinfo)
249 j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec;
252 jpeg_component_info *compptr;
255 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
256 SIZEOF(idct_controller));
257 lossyd->idct_private = (void *) idct;
258 lossyd->idct_start_pass = start_pass;
260 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
262 /* Allocate and pre-zero a multiplier table for each component */
264 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
265 SIZEOF(multiplier_table));
266 MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
267 /* Mark multiplier table not yet set up for any method */
268 idct->cur_method[ci] = -1;