4 * Copyright (C) 1991-1996, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains 1-pass color quantization (color mapping) routines.
9 * These routines provide mapping to a fixed color map using equally spaced
10 * color values. Optional Floyd-Steinberg or ordered dithering is available.
13 #define JPEG_INTERNALS
17 #ifdef QUANT_1PASS_SUPPORTED
21 * The main purpose of 1-pass quantization is to provide a fast, if not very
22 * high quality, colormapped output capability. A 2-pass quantizer usually
23 * gives better visual quality; however, for quantized grayscale output this
24 * quantizer is perfectly adequate. Dithering is highly recommended with this
25 * quantizer, though you can turn it off if you really want to.
27 * In 1-pass quantization the colormap must be chosen in advance of seeing the
28 * image. We use a map consisting of all combinations of Ncolors[i] color
29 * values for the i'th component. The Ncolors[] values are chosen so that
30 * their product, the total number of colors, is no more than that requested.
31 * (In most cases, the product will be somewhat less.)
33 * Since the colormap is orthogonal, the representative value for each color
34 * component can be determined without considering the other components;
35 * then these indexes can be combined into a colormap index by a standard
36 * N-dimensional-array-subscript calculation. Most of the arithmetic involved
37 * can be precalculated and stored in the lookup table colorindex[].
38 * colorindex[i][j] maps pixel value j in component i to the nearest
39 * representative value (grid plane) for that component; this index is
40 * multiplied by the array stride for component i, so that the
41 * index of the colormap entry closest to a given pixel value is just
42 * sum( colorindex[component-number][pixel-component-value] )
43 * Aside from being fast, this scheme allows for variable spacing between
44 * representative values with no additional lookup cost.
46 * If gamma correction has been applied in color conversion, it might be wise
47 * to adjust the color grid spacing so that the representative colors are
48 * equidistant in linear space. At this writing, gamma correction is not
49 * implemented by jdcolor, so nothing is done here.
53 /* Declarations for ordered dithering.
55 * We use a standard 16x16 ordered dither array. The basic concept of ordered
56 * dithering is described in many references, for instance Dale Schumacher's
57 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
58 * In place of Schumacher's comparisons against a "threshold" value, we add a
59 * "dither" value to the input pixel and then round the result to the nearest
60 * output value. The dither value is equivalent to (0.5 - threshold) times
61 * the distance between output values. For ordered dithering, we assume that
62 * the output colors are equally spaced; if not, results will probably be
63 * worse, since the dither may be too much or too little at a given point.
65 * The normal calculation would be to form pixel value + dither, range-limit
66 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
67 * We can skip the separate range-limiting step by extending the colorindex
68 * table in both directions.
71 #define ODITHER_SIZE 16 /* dimension of dither matrix */
72 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
73 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
74 #define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
76 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
77 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
79 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
80 /* Bayer's order-4 dither array. Generated by the code given in
81 * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
82 * The values in this array must range from 0 to ODITHER_CELLS-1.
84 { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
85 { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
86 { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
87 { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
88 { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
89 { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
90 { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
91 { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
92 { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
93 { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
94 { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
95 { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
96 { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
97 { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
98 { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
99 { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
103 /* Declarations for Floyd-Steinberg dithering.
105 * Errors are accumulated into the array fserrors[], at a resolution of
106 * 1/16th of a pixel count. The error at a given pixel is propagated
107 * to its not-yet-processed neighbors using the standard F-S fractions,
110 * We work left-to-right on even rows, right-to-left on odd rows.
112 * We can get away with a single array (holding one row's worth of errors)
113 * by using it to store the current row's errors at pixel columns not yet
114 * processed, but the next row's errors at columns already processed. We
115 * need only a few extra variables to hold the errors immediately around the
116 * current column. (If we are lucky, those variables are in registers, but
117 * even if not, they're probably cheaper to access than array elements are.)
119 * The fserrors[] array is indexed [component#][position].
120 * We provide (#columns + 2) entries per component; the extra entry at each
121 * end saves us from special-casing the first and last pixels.
123 * Note: on a wide image, we might not have enough room in a PC's near data
124 * segment to hold the error array; so it is allocated with alloc_large.
127 #if BITS_IN_JSAMPLE == 8
128 typedef INT16 FSERROR; /* 16 bits should be enough */
129 typedef int LOCFSERROR; /* use 'int' for calculation temps */
131 typedef INT32 FSERROR; /* may need more than 16 bits */
132 typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
135 typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
138 /* Private subobject */
140 #define MAX_Q_COMPS 4 /* max components I can handle */
143 struct jpeg_color_quantizer pub; /* public fields */
145 /* Initially allocated colormap is saved here */
146 JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
147 int sv_actual; /* number of entries in use */
149 JSAMPARRAY colorindex; /* Precomputed mapping for speed */
150 /* colorindex[i][j] = index of color closest to pixel value j in component i,
151 * premultiplied as described above. Since colormap indexes must fit into
152 * JSAMPLEs, the entries of this array will too.
154 boolean is_padded; /* is the colorindex padded for odither? */
156 int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
158 /* Variables for ordered dithering */
159 int row_index; /* cur row's vertical index in dither matrix */
160 ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
162 /* Variables for Floyd-Steinberg dithering */
163 FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
164 boolean on_odd_row; /* flag to remember which row we are on */
167 typedef my_cquantizer * my_cquantize_ptr;
171 * Policy-making subroutines for create_colormap and create_colorindex.
172 * These routines determine the colormap to be used. The rest of the module
173 * only assumes that the colormap is orthogonal.
175 * * select_ncolors decides how to divvy up the available colors
176 * among the components.
177 * * output_value defines the set of representative values for a component.
178 * * largest_input_value defines the mapping from input values to
179 * representative values for a component.
180 * Note that the latter two routines may impose different policies for
181 * different components, though this is not currently done.
186 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
187 /* Determine allocation of desired colors to components, */
188 /* and fill in Ncolors[] array to indicate choice. */
189 /* Return value is total number of colors (product of Ncolors[] values). */
191 int nc = cinfo->out_color_components; /* number of color components */
192 int max_colors = cinfo->desired_number_of_colors;
193 int total_colors, iroot, i, j;
196 static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
198 /* We can allocate at least the nc'th root of max_colors per component. */
199 /* Compute floor(nc'th root of max_colors). */
203 temp = iroot; /* set temp = iroot ** nc */
204 for (i = 1; i < nc; i++)
206 } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
207 iroot--; /* now iroot = floor(root) */
209 /* Must have at least 2 color values per component */
211 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
213 /* Initialize to iroot color values for each component */
215 for (i = 0; i < nc; i++) {
217 total_colors *= iroot;
219 /* We may be able to increment the count for one or more components without
220 * exceeding max_colors, though we know not all can be incremented.
221 * Sometimes, the first component can be incremented more than once!
222 * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
223 * In RGB colorspace, try to increment G first, then R, then B.
227 for (i = 0; i < nc; i++) {
228 j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
229 /* calculate new total_colors if Ncolors[j] is incremented */
230 temp = total_colors / Ncolors[j];
231 temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
232 if (temp > (long) max_colors)
233 break; /* won't fit, done with this pass */
234 Ncolors[j]++; /* OK, apply the increment */
235 total_colors = (int) temp;
245 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
246 /* Return j'th output value, where j will range from 0 to maxj */
247 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
249 (void)cinfo;(void)ci;
250 /* We always provide values 0 and MAXJSAMPLE for each component;
251 * any additional values are equally spaced between these limits.
252 * (Forcing the upper and lower values to the limits ensures that
253 * dithering can't produce a color outside the selected gamut.)
255 return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
260 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
261 /* Return largest input value that should map to j'th output value */
262 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
264 (void)cinfo;(void)ci;
265 /* Breakpoints are halfway between values returned by output_value */
266 return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
271 * Create the colormap.
275 create_colormap (j_decompress_ptr cinfo)
277 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
278 JSAMPARRAY colormap; /* Created colormap */
279 int total_colors; /* Number of distinct output colors */
280 int i,j,k, nci, blksize, blkdist, ptr, val;
282 /* Select number of colors for each component */
283 total_colors = select_ncolors(cinfo, cquantize->Ncolors);
285 /* Report selected color counts */
286 if (cinfo->out_color_components == 3)
287 TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
288 total_colors, cquantize->Ncolors[0],
289 cquantize->Ncolors[1], cquantize->Ncolors[2]);
291 TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
293 /* Allocate and fill in the colormap. */
294 /* The colors are ordered in the map in standard row-major order, */
295 /* i.e. rightmost (highest-indexed) color changes most rapidly. */
297 colormap = (*cinfo->mem->alloc_sarray)
298 ((j_common_ptr) cinfo, JPOOL_IMAGE,
299 (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
301 /* blksize is number of adjacent repeated entries for a component */
302 /* blkdist is distance between groups of identical entries for a component */
303 blkdist = total_colors;
305 for (i = 0; i < cinfo->out_color_components; i++) {
306 /* fill in colormap entries for i'th color component */
307 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
308 blksize = blkdist / nci;
309 for (j = 0; j < nci; j++) {
310 /* Compute j'th output value (out of nci) for component */
311 val = output_value(cinfo, i, j, nci-1);
312 /* Fill in all colormap entries that have this value of this component */
313 for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
314 /* fill in blksize entries beginning at ptr */
315 for (k = 0; k < blksize; k++)
316 colormap[i][ptr+k] = (JSAMPLE) val;
319 blkdist = blksize; /* blksize of this color is blkdist of next */
322 /* Save the colormap in private storage,
323 * where it will survive color quantization mode changes.
325 cquantize->sv_colormap = colormap;
326 cquantize->sv_actual = total_colors;
331 * Create the color index table.
335 create_colorindex (j_decompress_ptr cinfo)
337 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
339 int i,j,k, nci, blksize, val, pad;
341 /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
342 * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
343 * This is not necessary in the other dithering modes. However, we
344 * flag whether it was done in case user changes dithering mode.
346 if (cinfo->dither_mode == JDITHER_ORDERED) {
348 cquantize->is_padded = TRUE;
351 cquantize->is_padded = FALSE;
354 cquantize->colorindex = (*cinfo->mem->alloc_sarray)
355 ((j_common_ptr) cinfo, JPOOL_IMAGE,
356 (JDIMENSION) (MAXJSAMPLE+1 + pad),
357 (JDIMENSION) cinfo->out_color_components);
359 /* blksize is number of adjacent repeated entries for a component */
360 blksize = cquantize->sv_actual;
362 for (i = 0; i < cinfo->out_color_components; i++) {
363 /* fill in colorindex entries for i'th color component */
364 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
365 blksize = blksize / nci;
367 /* adjust colorindex pointers to provide padding at negative indexes. */
369 cquantize->colorindex[i] += MAXJSAMPLE;
371 /* in loop, val = index of current output value, */
372 /* and k = largest j that maps to current val */
373 indexptr = cquantize->colorindex[i];
375 k = largest_input_value(cinfo, i, 0, nci-1);
376 for (j = 0; j <= MAXJSAMPLE; j++) {
377 while (j > k) /* advance val if past boundary */
378 k = largest_input_value(cinfo, i, ++val, nci-1);
379 /* premultiply so that no multiplication needed in main processing */
380 indexptr[j] = (JSAMPLE) (val * blksize);
382 /* Pad at both ends if necessary */
384 for (j = 1; j <= MAXJSAMPLE; j++) {
385 indexptr[-j] = indexptr[0];
386 indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
393 * Create an ordered-dither array for a component having ncolors
394 * distinct output values.
397 LOCAL(ODITHER_MATRIX_PTR)
398 make_odither_array (j_decompress_ptr cinfo, int ncolors)
400 ODITHER_MATRIX_PTR odither;
404 odither = (ODITHER_MATRIX_PTR)
405 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
406 SIZEOF(ODITHER_MATRIX));
407 /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
408 * Hence the dither value for the matrix cell with fill order f
409 * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
410 * On 16-bit-int machine, be careful to avoid overflow.
412 den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
413 for (j = 0; j < ODITHER_SIZE; j++) {
414 for (k = 0; k < ODITHER_SIZE; k++) {
415 num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
417 /* Ensure round towards zero despite C's lack of consistency
418 * about rounding negative values in integer division...
420 odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
428 * Create the ordered-dither tables.
429 * Components having the same number of representative colors may
430 * share a dither table.
434 create_odither_tables (j_decompress_ptr cinfo)
436 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
437 ODITHER_MATRIX_PTR odither;
440 for (i = 0; i < cinfo->out_color_components; i++) {
441 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
442 odither = NULL; /* search for matching prior component */
443 for (j = 0; j < i; j++) {
444 if (nci == cquantize->Ncolors[j]) {
445 odither = cquantize->odither[j];
449 if (odither == NULL) /* need a new table? */
450 odither = make_odither_array(cinfo, nci);
451 cquantize->odither[i] = odither;
457 * Map some rows of pixels to the output colormapped representation.
461 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
462 JSAMPARRAY output_buf, int num_rows)
463 /* General case, no dithering */
465 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
466 JSAMPARRAY colorindex = cquantize->colorindex;
467 register int pixcode, ci;
468 register JSAMPROW ptrin, ptrout;
471 JDIMENSION width = cinfo->output_width;
472 register int nc = cinfo->out_color_components;
474 for (row = 0; row < num_rows; row++) {
475 ptrin = input_buf[row];
476 ptrout = output_buf[row];
477 for (col = width; col > 0; col--) {
479 for (ci = 0; ci < nc; ci++) {
480 pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
482 *ptrout++ = (JSAMPLE) pixcode;
489 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
490 JSAMPARRAY output_buf, int num_rows)
491 /* Fast path for out_color_components==3, no dithering */
493 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
494 register int pixcode;
495 register JSAMPROW ptrin, ptrout;
496 JSAMPROW colorindex0 = cquantize->colorindex[0];
497 JSAMPROW colorindex1 = cquantize->colorindex[1];
498 JSAMPROW colorindex2 = cquantize->colorindex[2];
501 JDIMENSION width = cinfo->output_width;
503 for (row = 0; row < num_rows; row++) {
504 ptrin = input_buf[row];
505 ptrout = output_buf[row];
506 for (col = width; col > 0; col--) {
507 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
508 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
509 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
510 *ptrout++ = (JSAMPLE) pixcode;
517 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
518 JSAMPARRAY output_buf, int num_rows)
519 /* General case, with ordered dithering */
521 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
522 register JSAMPROW input_ptr;
523 register JSAMPROW output_ptr;
524 JSAMPROW colorindex_ci;
525 int * dither; /* points to active row of dither matrix */
526 int row_index, col_index; /* current indexes into dither matrix */
527 int nc = cinfo->out_color_components;
531 JDIMENSION width = cinfo->output_width;
533 for (row = 0; row < num_rows; row++) {
534 /* Initialize output values to 0 so can process components separately */
535 jzero_far((void FAR *) output_buf[row],
536 (size_t) (width * SIZEOF(JSAMPLE)));
537 row_index = cquantize->row_index;
538 for (ci = 0; ci < nc; ci++) {
539 input_ptr = input_buf[row] + ci;
540 output_ptr = output_buf[row];
541 colorindex_ci = cquantize->colorindex[ci];
542 dither = cquantize->odither[ci][row_index];
545 for (col = width; col > 0; col--) {
546 /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
547 * select output value, accumulate into output code for this pixel.
548 * Range-limiting need not be done explicitly, as we have extended
549 * the colorindex table to produce the right answers for out-of-range
550 * inputs. The maximum dither is +- MAXJSAMPLE; this sets the
551 * required amount of padding.
553 *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
556 col_index = (col_index + 1) & ODITHER_MASK;
559 /* Advance row index for next row */
560 row_index = (row_index + 1) & ODITHER_MASK;
561 cquantize->row_index = row_index;
567 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
568 JSAMPARRAY output_buf, int num_rows)
569 /* Fast path for out_color_components==3, with ordered dithering */
571 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
572 register int pixcode;
573 register JSAMPROW input_ptr;
574 register JSAMPROW output_ptr;
575 JSAMPROW colorindex0 = cquantize->colorindex[0];
576 JSAMPROW colorindex1 = cquantize->colorindex[1];
577 JSAMPROW colorindex2 = cquantize->colorindex[2];
578 int * dither0; /* points to active row of dither matrix */
581 int row_index, col_index; /* current indexes into dither matrix */
584 JDIMENSION width = cinfo->output_width;
586 for (row = 0; row < num_rows; row++) {
587 row_index = cquantize->row_index;
588 input_ptr = input_buf[row];
589 output_ptr = output_buf[row];
590 dither0 = cquantize->odither[0][row_index];
591 dither1 = cquantize->odither[1][row_index];
592 dither2 = cquantize->odither[2][row_index];
595 for (col = width; col > 0; col--) {
596 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
597 dither0[col_index]]);
598 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
599 dither1[col_index]]);
600 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
601 dither2[col_index]]);
602 *output_ptr++ = (JSAMPLE) pixcode;
603 col_index = (col_index + 1) & ODITHER_MASK;
605 row_index = (row_index + 1) & ODITHER_MASK;
606 cquantize->row_index = row_index;
612 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
613 JSAMPARRAY output_buf, int num_rows)
614 /* General case, with Floyd-Steinberg dithering */
616 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
617 register LOCFSERROR cur; /* current error or pixel value */
618 LOCFSERROR belowerr; /* error for pixel below cur */
619 LOCFSERROR bpreverr; /* error for below/prev col */
620 LOCFSERROR bnexterr; /* error for below/next col */
622 register FSERRPTR errorptr; /* => fserrors[] at column before current */
623 register JSAMPROW input_ptr;
624 register JSAMPROW output_ptr;
625 JSAMPROW colorindex_ci;
626 JSAMPROW colormap_ci;
628 int nc = cinfo->out_color_components;
629 int dir; /* 1 for left-to-right, -1 for right-to-left */
630 int dirnc; /* dir * nc */
634 JDIMENSION width = cinfo->output_width;
635 JSAMPLE *range_limit = cinfo->sample_range_limit;
638 for (row = 0; row < num_rows; row++) {
639 /* Initialize output values to 0 so can process components separately */
640 jzero_far((void FAR *) output_buf[row],
641 (size_t) (width * SIZEOF(JSAMPLE)));
642 for (ci = 0; ci < nc; ci++) {
643 input_ptr = input_buf[row] + ci;
644 output_ptr = output_buf[row];
645 if (cquantize->on_odd_row) {
646 /* work right to left in this row */
647 input_ptr += (width-1) * nc; /* so point to rightmost pixel */
648 output_ptr += width-1;
651 errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
653 /* work left to right in this row */
656 errorptr = cquantize->fserrors[ci]; /* => entry before first column */
658 colorindex_ci = cquantize->colorindex[ci];
659 colormap_ci = cquantize->sv_colormap[ci];
660 /* Preset error values: no error propagated to first pixel from left */
662 /* and no error propagated to row below yet */
663 belowerr = bpreverr = 0;
665 for (col = width; col > 0; col--) {
666 /* cur holds the error propagated from the previous pixel on the
667 * current line. Add the error propagated from the previous line
668 * to form the complete error correction term for this pixel, and
669 * round the error term (which is expressed * 16) to an integer.
670 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
671 * for either sign of the error value.
672 * Note: errorptr points to *previous* column's array entry.
674 cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
675 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
676 * The maximum error is +- MAXJSAMPLE; this sets the required size
677 * of the range_limit array.
679 cur += GETJSAMPLE(*input_ptr);
680 cur = GETJSAMPLE(range_limit[cur]);
681 /* Select output value, accumulate into output code for this pixel */
682 pixcode = GETJSAMPLE(colorindex_ci[cur]);
683 *output_ptr += (JSAMPLE) pixcode;
684 /* Compute actual representation error at this pixel */
685 /* Note: we can do this even though we don't have the final */
686 /* pixel code, because the colormap is orthogonal. */
687 cur -= GETJSAMPLE(colormap_ci[pixcode]);
688 /* Compute error fractions to be propagated to adjacent pixels.
689 * Add these into the running sums, and simultaneously shift the
690 * next-line error sums left by 1 column.
694 cur += delta; /* form error * 3 */
695 errorptr[0] = (FSERROR) (bpreverr + cur);
696 cur += delta; /* form error * 5 */
697 bpreverr = belowerr + cur;
699 cur += delta; /* form error * 7 */
700 /* At this point cur contains the 7/16 error value to be propagated
701 * to the next pixel on the current line, and all the errors for the
702 * next line have been shifted over. We are therefore ready to move on.
704 input_ptr += dirnc; /* advance input ptr to next column */
705 output_ptr += dir; /* advance output ptr to next column */
706 errorptr += dir; /* advance errorptr to current column */
708 /* Post-loop cleanup: we must unload the final error value into the
709 * final fserrors[] entry. Note we need not unload belowerr because
710 * it is for the dummy column before or after the actual array.
712 errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
714 cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
720 * Allocate workspace for Floyd-Steinberg errors.
724 alloc_fs_workspace (j_decompress_ptr cinfo)
726 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
730 arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
731 for (i = 0; i < cinfo->out_color_components; i++) {
732 cquantize->fserrors[i] = (FSERRPTR)
733 (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
739 * Initialize for one-pass color quantization.
743 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
745 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
750 /* Install my colormap. */
751 cinfo->colormap = cquantize->sv_colormap;
752 cinfo->actual_number_of_colors = cquantize->sv_actual;
754 /* Initialize for desired dithering mode. */
755 switch (cinfo->dither_mode) {
757 if (cinfo->out_color_components == 3)
758 cquantize->pub.color_quantize = color_quantize3;
760 cquantize->pub.color_quantize = color_quantize;
762 case JDITHER_ORDERED:
763 if (cinfo->out_color_components == 3)
764 cquantize->pub.color_quantize = quantize3_ord_dither;
766 cquantize->pub.color_quantize = quantize_ord_dither;
767 cquantize->row_index = 0; /* initialize state for ordered dither */
768 /* If user changed to ordered dither from another mode,
769 * we must recreate the color index table with padding.
770 * This will cost extra space, but probably isn't very likely.
772 if (! cquantize->is_padded)
773 create_colorindex(cinfo);
774 /* Create ordered-dither tables if we didn't already. */
775 if (cquantize->odither[0] == NULL)
776 create_odither_tables(cinfo);
779 cquantize->pub.color_quantize = quantize_fs_dither;
780 cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
781 /* Allocate Floyd-Steinberg workspace if didn't already. */
782 if (cquantize->fserrors[0] == NULL)
783 alloc_fs_workspace(cinfo);
784 /* Initialize the propagated errors to zero. */
785 arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
786 for (i = 0; i < cinfo->out_color_components; i++)
787 jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
790 ERREXIT(cinfo, JERR_NOT_COMPILED);
797 * Finish up at the end of the pass.
801 finish_pass_1_quant (j_decompress_ptr cinfo)
804 /* no work in 1-pass case */
809 * Switch to a new external colormap between output passes.
810 * Shouldn't get to this module!
814 new_color_map_1_quant (j_decompress_ptr cinfo)
816 ERREXIT(cinfo, JERR_MODE_CHANGE);
821 * Module initialization routine for 1-pass color quantization.
825 jinit_1pass_quantizer (j_decompress_ptr cinfo)
827 my_cquantize_ptr cquantize;
829 cquantize = (my_cquantize_ptr)
830 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
831 SIZEOF(my_cquantizer));
832 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
833 cquantize->pub.start_pass = start_pass_1_quant;
834 cquantize->pub.finish_pass = finish_pass_1_quant;
835 cquantize->pub.new_color_map = new_color_map_1_quant;
836 cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
837 cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
839 /* Make sure my internal arrays won't overflow */
840 if (cinfo->out_color_components > MAX_Q_COMPS)
841 ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
842 /* Make sure colormap indexes can be represented by JSAMPLEs */
843 if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
844 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
846 /* Create the colormap and color index table. */
847 create_colormap(cinfo);
848 create_colorindex(cinfo);
850 /* Allocate Floyd-Steinberg workspace now if requested.
851 * We do this now since it is FAR storage and may affect the memory
852 * manager's space calculations. If the user changes to FS dither
853 * mode in a later pass, we will allocate the space then, and will
854 * possibly overrun the max_memory_to_use setting.
856 if (cinfo->dither_mode == JDITHER_FS)
857 alloc_fs_workspace(cinfo);
860 #endif /* QUANT_1PASS_SUPPORTED */