1 // xImaInt.cpp : interpolation functions
2 /* 02/2004 - Branko Brevensek
3 * CxImage version 6.0.0 02/Feb/2008 - Davide Pizzolato - www.xdp.it
9 #if CXIMAGE_SUPPORT_INTERPOLATION
11 ////////////////////////////////////////////////////////////////////////////////
13 * Recalculates coordinates according to specified overflow method.
14 * If pixel (x,y) lies within image, nothing changes.
16 * \param x, y - coordinates of pixel
17 * \param ofMethod - overflow method
19 * \return x, y - new coordinates (pixel (x,y) now lies inside image)
21 * \author ***bd*** 2.2004
23 void CxImage::OverflowCoordinates(long &x, long &y, OverflowMethod const ofMethod)
25 if (IsInside(x,y)) return; //if pixel is within bounds, no change
29 x=__max(x,0); x=__min(x, head.biWidth-1);
30 y=__max(y,0); y=__min(y, head.biHeight-1);
35 y = y % head.biHeight;
36 if (x<0) x = head.biWidth + x;
37 if (y<0) y = head.biHeight + y;
40 //mirror pixels near border
41 if (x<0) x=((-x) % head.biWidth);
42 else if (x>=head.biWidth) x=head.biWidth-(x % head.biWidth + 1);
43 if (y<0) y=((-y) % head.biHeight);
44 else if (y>=head.biHeight) y=head.biHeight-(y % head.biHeight + 1);
51 ////////////////////////////////////////////////////////////////////////////////
53 * See OverflowCoordinates for integer version
54 * \author ***bd*** 2.2004
56 void CxImage::OverflowCoordinates(float &x, float &y, OverflowMethod const ofMethod)
58 if (x>=0 && x<head.biWidth && y>=0 && y<head.biHeight) return; //if pixel is within bounds, no change
62 x=__max(x,0); x=__min(x, head.biWidth-1);
63 y=__max(y,0); y=__min(y, head.biHeight-1);
67 x = (float)fmod(x, (float) head.biWidth);
68 y = (float)fmod(y, (float) head.biHeight);
69 if (x<0) x = head.biWidth + x;
70 if (y<0) y = head.biHeight + y;
73 //mirror pixels near border
74 if (x<0) x=(float)fmod(-x, (float) head.biWidth);
75 else if (x>=head.biWidth) x=head.biWidth-((float)fmod(x, (float) head.biWidth) + 1);
76 if (y<0) y=(float)fmod(-y, (float) head.biHeight);
77 else if (y>=head.biHeight) y=head.biHeight-((float)fmod(y, (float) head.biHeight) + 1);
84 ////////////////////////////////////////////////////////////////////////////////
86 * Method return pixel color. Different methods are implemented for out of bounds pixels.
87 * If an image has alpha channel, alpha value is returned in .RGBReserved.
89 * \param x,y : pixel coordinates
90 * \param ofMethod : out-of-bounds method:
91 * - OF_WRAP - wrap over to pixels on other side of the image
92 * - OF_REPEAT - repeat last pixel on the edge
93 * - OF_COLOR - return input value of color
94 * - OF_BACKGROUND - return background color (if not set, return input color)
95 * - OF_TRANSPARENT - return transparent pixel
97 * \param rplColor : input color (returned for out-of-bound coordinates in OF_COLOR mode and if other mode is not applicable)
99 * \return color : color of pixel
100 * \author ***bd*** 2.2004
102 RGBQUAD CxImage::GetPixelColorWithOverflow(long x, long y, OverflowMethod const ofMethod, RGBQUAD* const rplColor)
104 RGBQUAD color; //color to return
105 if ((!IsInside(x,y)) || pDib==NULL) { //is pixel within bouns?:
106 //pixel is out of bounds or no DIB
110 color.rgbRed=color.rgbGreen=color.rgbBlue=255; color.rgbReserved=0; //default replacement colour: white transparent
112 if (pDib==NULL) return color;
113 //pixel is out of bounds:
116 #if CXIMAGE_SUPPORT_ALPHA
117 if (AlphaIsValid()) {
118 //alpha transparency is supported and image has alpha layer
121 #endif //CXIMAGE_SUPPORT_ALPHA
122 //no alpha transparency
123 if (GetTransIndex()>=0) {
124 color=GetTransColor(); //single color transparency enabled (return transparent color)
126 #if CXIMAGE_SUPPORT_ALPHA
128 #endif //CXIMAGE_SUPPORT_ALPHA
131 //return background color (if it exists, otherwise input value)
132 if (info.nBkgndIndex >= 0) {
133 if (head.biBitCount<24) color = GetPaletteColor((BYTE)info.nBkgndIndex);
134 else color = info.nBkgndColor;
140 OverflowCoordinates(x,y,ofMethod);
143 //simply return replacement color (OM_COLOR and others)
147 //just return specified pixel (it's within bounds)
148 return BlindGetPixelColor(x,y);
151 ////////////////////////////////////////////////////////////////////////////////
153 * This method reconstructs image according to chosen interpolation method and then returns pixel (x,y).
154 * (x,y) can lie between actual image pixels. If (x,y) lies outside of image, method returns value
155 * according to overflow method.
156 * This method is very useful for geometrical image transformations, where destination pixel
157 * can often assume color value lying between source pixels.
159 * \param (x,y) - coordinates of pixel to return
160 * GPCI method recreates "analogue" image back from digital data, so x and y
161 * are float values and color value of point (1.1,1) will generally not be same
162 * as (1,1). Center of first pixel is at (0,0) and center of pixel right to it is (1,0).
163 * (0.5,0) is half way between these two pixels.
164 * \param inMethod - interpolation (reconstruction) method (kernel) to use:
165 * - IM_NEAREST_NEIGHBOUR - returns colour of nearest lying pixel (causes stairy look of
167 * - IM_BILINEAR - interpolates colour from four neighbouring pixels (softens image a bit)
168 * - IM_BICUBIC - interpolates from 16 neighbouring pixels (can produce "halo" artifacts)
169 * - IM_BICUBIC2 - interpolates from 16 neighbouring pixels (perhaps a bit less halo artifacts
171 * - IM_BSPLINE - interpolates from 16 neighbouring pixels (softens image, washes colours)
172 * (As far as I know, image should be prefiltered for this method to give
173 * good results... some other time :) )
174 * This method uses bicubic interpolation kernel from CXImage 5.99a and older
176 * - IM_LANCZOS - interpolates from 12*12 pixels (slow, ringing artifacts)
178 * \param ofMethod - overflow method (see comments at GetPixelColorWithOverflow)
179 * \param rplColor - pointer to color used for out of borders pixels in OM_COLOR mode
180 * (and other modes if colour can't calculated in a specified way)
182 * \return interpolated color value (including interpolated alpha value, if image has alpha layer)
184 * \author ***bd*** 2.2004
186 RGBQUAD CxImage::GetPixelColorInterpolated(
188 InterpolationMethod const inMethod,
189 OverflowMethod const ofMethod,
190 RGBQUAD* const rplColor)
192 //calculate nearest pixel
193 int xi=(int)(x); if (x<0) xi--; //these replace (incredibly slow) floor (Visual c++ 2003, AMD Athlon)
194 int yi=(int)(y); if (y<0) yi--;
195 RGBQUAD color; //calculated colour
198 case IM_NEAREST_NEIGHBOUR:
199 return GetPixelColorWithOverflow((long)(x+0.5f), (long)(y+0.5f), ofMethod, rplColor);
201 //IM_BILINEAR: bilinear interpolation
202 if (xi<-1 || xi>=head.biWidth || yi<-1 || yi>=head.biHeight) { //all 4 points are outside bounds?:
204 case OM_COLOR: case OM_TRANSPARENT: case OM_BACKGROUND:
205 //we don't need to interpolate anything with all points outside in this case
206 return GetPixelColorWithOverflow(-999, -999, ofMethod, rplColor);
208 //recalculate coordinates and use faster method later on
209 OverflowCoordinates(x,y,ofMethod);
210 xi=(int)(x); if (x<0) xi--; //x and/or y have changed ... recalculate xi and yi
211 yi=(int)(y); if (y<0) yi--;
214 //get four neighbouring pixels
215 if ((xi+1)<head.biWidth && xi>=0 && (yi+1)<head.biHeight && yi>=0 && head.biClrUsed==0) {
216 //all pixels are inside RGB24 image... optimize reading (and use fixed point arithmetic)
217 WORD wt1=(WORD)((x-xi)*256.0f), wt2=(WORD)((y-yi)*256.0f);
223 BYTE *pxptr=(BYTE*)info.pImage+yi*info.dwEffWidth+xi*3;
224 wbb=wa*(*pxptr++); wgg=wa*(*pxptr++); wrr=wa*(*pxptr++);
225 wbb+=wb*(*pxptr++); wgg+=wb*(*pxptr++); wrr+=wb*(*pxptr);
226 pxptr+=(info.dwEffWidth-5); //move to next row
227 wbb+=wc*(*pxptr++); wgg+=wc*(*pxptr++); wrr+=wc*(*pxptr++);
228 wbb+=wd*(*pxptr++); wgg+=wd*(*pxptr++); wrr+=wd*(*pxptr);
229 color.rgbRed=(BYTE) (wrr>>8); color.rgbGreen=(BYTE) (wgg>>8); color.rgbBlue=(BYTE) (wbb>>8);
230 #if CXIMAGE_SUPPORT_ALPHA
233 //image has alpha layer... we have to do the same for alpha data
234 pxptr=AlphaGetPointer(xi,yi); //pointer to first byte
235 waa=wa*(*pxptr++); waa+=wb*(*pxptr); //first two pixels
236 pxptr+=(head.biWidth-1); //move to next row
237 waa+=wc*(*pxptr++); waa+=wd*(*pxptr); //and second row pixels
238 color.rgbReserved=(BYTE) (waa>>8);
241 { //Alpha not supported or no alpha at all
242 color.rgbReserved = 0;
246 //default (slower) way to get pixels (not RGB24 or some pixels out of borders)
247 float t1=x-xi, t2=y-yi;
252 RGBQUAD rgb11,rgb21,rgb12,rgb22;
253 rgb11=GetPixelColorWithOverflow(xi, yi, ofMethod, rplColor);
254 rgb21=GetPixelColorWithOverflow(xi+1, yi, ofMethod, rplColor);
255 rgb12=GetPixelColorWithOverflow(xi, yi+1, ofMethod, rplColor);
256 rgb22=GetPixelColorWithOverflow(xi+1, yi+1, ofMethod, rplColor);
257 //calculate linear interpolation
258 color.rgbRed=(BYTE) (a*rgb11.rgbRed+b*rgb21.rgbRed+c*rgb12.rgbRed+d*rgb22.rgbRed);
259 color.rgbGreen=(BYTE) (a*rgb11.rgbGreen+b*rgb21.rgbGreen+c*rgb12.rgbGreen+d*rgb22.rgbGreen);
260 color.rgbBlue=(BYTE) (a*rgb11.rgbBlue+b*rgb21.rgbBlue+c*rgb12.rgbBlue+d*rgb22.rgbBlue);
261 #if CXIMAGE_SUPPORT_ALPHA
263 color.rgbReserved=(BYTE) (a*rgb11.rgbReserved+b*rgb21.rgbReserved+c*rgb12.rgbReserved+d*rgb22.rgbReserved);
266 { //Alpha not supported or no alpha at all
267 color.rgbReserved = 0;
287 //bicubic interpolation(s)
288 if (((xi+2)<0) || ((xi-1)>=head.biWidth) || ((yi+2)<0) || ((yi-1)>=head.biHeight)) { //all points are outside bounds?:
290 case OM_COLOR: case OM_TRANSPARENT: case OM_BACKGROUND:
291 //we don't need to interpolate anything with all points outside in this case
292 return GetPixelColorWithOverflow(-999, -999, ofMethod, rplColor);
295 //recalculate coordinates and use faster method later on
296 OverflowCoordinates(x,y,ofMethod);
297 xi=(int)(x); if (x<0) xi--; //x and/or y have changed ... recalculate xi and yi
298 yi=(int)(y); if (y<0) yi--;
302 //some variables needed from here on
303 int xii,yii; //x any y integer indexes for loops
304 float kernel, kernelyc; //kernel cache
305 float kernelx[12], kernely[4]; //precalculated kernel values
306 float rr,gg,bb,aa; //accumulated color values
307 //calculate multiplication factors for all pixels
311 for (i=0; i<4; i++) {
312 kernelx[i]=KernelCubic((float)(xi+i-1-x));
313 kernely[i]=KernelCubic((float)(yi+i-1-y));
317 for (i=0; i<4; i++) {
318 kernelx[i]=KernelGeneralizedCubic((float)(xi+i-1-x), -0.5);
319 kernely[i]=KernelGeneralizedCubic((float)(yi+i-1-y), -0.5);
323 for (i=0; i<4; i++) {
324 kernelx[i]=KernelBSpline((float)(xi+i-1-x));
325 kernely[i]=KernelBSpline((float)(yi+i-1-y));
329 for (i=0; i<4; i++) {
330 kernelx[i]=KernelBox((float)(xi+i-1-x));
331 kernely[i]=KernelBox((float)(yi+i-1-y));
335 for (i=0; i<4; i++) {
336 kernelx[i]=KernelHermite((float)(xi+i-1-x));
337 kernely[i]=KernelHermite((float)(yi+i-1-y));
341 for (i=0; i<4; i++) {
342 kernelx[i]=KernelHamming((float)(xi+i-1-x));
343 kernely[i]=KernelHamming((float)(yi+i-1-y));
347 for (i=0; i<4; i++) {
348 kernelx[i]=KernelSinc((float)(xi+i-1-x));
349 kernely[i]=KernelSinc((float)(yi+i-1-y));
353 for (i=0; i<4; i++) {
354 kernelx[i]=KernelBlackman((float)(xi+i-1-x));
355 kernely[i]=KernelBlackman((float)(yi+i-1-y));
359 for (i=0; i<4; i++) {
360 kernelx[i]=KernelBessel((float)(xi+i-1-x));
361 kernely[i]=KernelBessel((float)(yi+i-1-y));
365 for (i=0; i<4; i++) {
366 kernelx[i]=KernelGaussian((float)(xi+i-1-x));
367 kernely[i]=KernelGaussian((float)(yi+i-1-y));
371 for (i=0; i<4; i++) {
372 kernelx[i]=KernelQuadratic((float)(xi+i-1-x));
373 kernely[i]=KernelQuadratic((float)(yi+i-1-y));
377 for (i=0; i<4; i++) {
378 kernelx[i]=KernelMitchell((float)(xi+i-1-x));
379 kernely[i]=KernelMitchell((float)(yi+i-1-y));
383 for (i=0; i<4; i++) {
384 kernelx[i]=KernelCatrom((float)(xi+i-1-x));
385 kernely[i]=KernelCatrom((float)(yi+i-1-y));
389 for (i=0; i<4; i++) {
390 kernelx[i]=KernelHanning((float)(xi+i-1-x));
391 kernely[i]=KernelHanning((float)(yi+i-1-y));
395 for (i=0; i<4; i++) {
396 kernelx[i]=KernelPower((float)(xi+i-1-x));
397 kernely[i]=KernelPower((float)(yi+i-1-y));
404 if (((xi+2)<head.biWidth) && xi>=1 && ((yi+2)<head.biHeight) && (yi>=1) && !IsIndexed()) {
405 //optimized interpolation (faster pixel reads) for RGB24 images with all pixels inside bounds
406 BYTE *pxptr, *pxptra;
407 for (yii=yi-1; yii<yi+3; yii++) {
408 pxptr=(BYTE *)BlindGetPixelPointer(xi-1, yii); //calculate pointer to first byte in row
409 kernelyc=kernely[yii-(yi-1)];
410 #if CXIMAGE_SUPPORT_ALPHA
411 if (AlphaIsValid()) {
412 //alpha is supported and valid (optimized bicubic int. for image with alpha)
413 pxptra=AlphaGetPointer(xi-1, yii);
414 kernel=kernelyc*kernelx[0];
415 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
416 kernel=kernelyc*kernelx[1];
417 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
418 kernel=kernelyc*kernelx[2];
419 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
420 kernel=kernelyc*kernelx[3];
421 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr); aa+=kernel*(*pxptra);
424 //alpha not supported or valid (optimized bicubic int. for no alpha channel)
426 kernel=kernelyc*kernelx[0];
427 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
428 kernel=kernelyc*kernelx[1];
429 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
430 kernel=kernelyc*kernelx[2];
431 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
432 kernel=kernelyc*kernelx[3];
433 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr);
437 //slower more flexible interpolation for border pixels and paletted images
439 for (yii=yi-1; yii<yi+3; yii++) {
440 kernelyc=kernely[yii-(yi-1)];
441 for (xii=xi-1; xii<xi+3; xii++) {
442 kernel=kernelyc*kernelx[xii-(xi-1)];
443 rgbs=GetPixelColorWithOverflow(xii, yii, ofMethod, rplColor);
444 rr+=kernel*rgbs.rgbRed;
445 gg+=kernel*rgbs.rgbGreen;
446 bb+=kernel*rgbs.rgbBlue;
447 #if CXIMAGE_SUPPORT_ALPHA
448 aa+=kernel*rgbs.rgbReserved;
453 //for all colors, clip to 0..255 and assign to RGBQUAD
454 if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;
455 if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;
456 if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;
457 #if CXIMAGE_SUPPORT_ALPHA
458 if (AlphaIsValid()) {
459 if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;
462 { //Alpha not supported or no alpha at all
463 color.rgbReserved = 0;
467 //lanczos window (16*16) sinc interpolation
468 if (((xi+6)<0) || ((xi-5)>=head.biWidth) || ((yi+6)<0) || ((yi-5)>=head.biHeight)) {
469 //all points are outside bounds
471 case OM_COLOR: case OM_TRANSPARENT: case OM_BACKGROUND:
472 //we don't need to interpolate anything with all points outside in this case
473 return GetPixelColorWithOverflow(-999, -999, ofMethod, rplColor);
476 //recalculate coordinates and use faster method later on
477 OverflowCoordinates(x,y,ofMethod);
478 xi=(int)(x); if (x<0) xi--; //x and/or y have changed ... recalculate xi and yi
479 yi=(int)(y); if (y<0) yi--;
483 for (xii=xi-5; xii<xi+7; xii++) kernelx[xii-(xi-5)]=KernelLanczosSinc((float)(xii-x), 6.0f);
486 if (((xi+6)<head.biWidth) && ((xi-5)>=0) && ((yi+6)<head.biHeight) && ((yi-5)>=0) && !IsIndexed()) {
487 //optimized interpolation (faster pixel reads) for RGB24 images with all pixels inside bounds
488 BYTE *pxptr, *pxptra;
489 for (yii=yi-5; yii<yi+7; yii++) {
490 pxptr=(BYTE *)BlindGetPixelPointer(xi-5, yii); //calculate pointer to first byte in row
491 kernelyc=KernelLanczosSinc((float)(yii-y),6.0f);
492 #if CXIMAGE_SUPPORT_ALPHA
493 if (AlphaIsValid()) {
494 //alpha is supported and valid
495 pxptra=AlphaGetPointer(xi-1, yii);
496 for (xii=0; xii<12; xii++) {
497 kernel=kernelyc*kernelx[xii];
498 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
502 //alpha not supported or valid
504 for (xii=0; xii<12; xii++) {
505 kernel=kernelyc*kernelx[xii];
506 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
511 //slower more flexible interpolation for border pixels and paletted images
513 for (yii=yi-5; yii<yi+7; yii++) {
514 kernelyc=KernelLanczosSinc((float)(yii-y),6.0f);
515 for (xii=xi-5; xii<xi+7; xii++) {
516 kernel=kernelyc*kernelx[xii-(xi-5)];
517 rgbs=GetPixelColorWithOverflow(xii, yii, ofMethod, rplColor);
518 rr+=kernel*rgbs.rgbRed;
519 gg+=kernel*rgbs.rgbGreen;
520 bb+=kernel*rgbs.rgbBlue;
521 #if CXIMAGE_SUPPORT_ALPHA
522 aa+=kernel*rgbs.rgbReserved;
527 //for all colors, clip to 0..255 and assign to RGBQUAD
528 if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;
529 if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;
530 if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;
531 #if CXIMAGE_SUPPORT_ALPHA
532 if (AlphaIsValid()) {
533 if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;
536 { //Alpha not supported or no alpha at all
537 color.rgbReserved = 0;
542 ////////////////////////////////////////////////////////////////////////////////
544 * Helper function for GetAreaColorInterpolated.
545 * Adds 'surf' portion of image pixel with color 'color' to (rr,gg,bb,aa).
547 void CxImage::AddAveragingCont(RGBQUAD const &color, float const surf, float &rr, float &gg, float &bb, float &aa)
549 rr+=color.rgbRed*surf;
550 gg+=color.rgbGreen*surf;
551 bb+=color.rgbBlue*surf;
552 #if CXIMAGE_SUPPORT_ALPHA
553 aa+=color.rgbReserved*surf;
556 ////////////////////////////////////////////////////////////////////////////////
558 * This method is similar to GetPixelColorInterpolated, but this method also properly handles
560 * If you need to sample original image with interval of more than 1 pixel (as when shrinking an image),
561 * you should use this method instead of GetPixelColorInterpolated or aliasing will occur.
562 * When area width and height are both less than pixel, this method gets pixel color by interpolating
563 * color of frame center with selected (inMethod) interpolation by calling GetPixelColorInterpolated.
564 * If width and height are more than 1, method calculates color by averaging color of pixels within area.
565 * Interpolation method is not used in this case. Pixel color is interpolated by averaging instead.
566 * If only one of both is more than 1, method uses combination of interpolation and averaging.
567 * Chosen interpolation method is used, but since it is averaged later on, there is little difference
568 * between IM_BILINEAR (perhaps best for this case) and better methods. IM_NEAREST_NEIGHBOUR again
569 * leads to aliasing artifacts.
570 * This method is a bit slower than GetPixelColorInterpolated and when aliasing is not a problem, you should
571 * simply use the later.
573 * \param xc, yc - center of (rectangular) area
574 * \param w, h - width and height of area
575 * \param inMethod - interpolation method that is used, when interpolation is used (see above)
576 * \param ofMethod - overflow method used when retrieving individual pixel colors
577 * \param rplColor - replacement colour to use, in OM_COLOR
579 * \author ***bd*** 2.2004
581 RGBQUAD CxImage::GetAreaColorInterpolated(
582 float const xc, float const yc, float const w, float const h,
583 InterpolationMethod const inMethod,
584 OverflowMethod const ofMethod,
585 RGBQUAD* const rplColor)
587 RGBQUAD color; //calculated colour
590 //both width and height are less than one... we will use interpolation of center point
591 return GetPixelColorInterpolated(xc, yc, inMethod, ofMethod, rplColor);
593 //area is wider and/or taller than one pixel:
594 CxRect2 area(xc-w/2.0f, yc-h/2.0f, xc+w/2.0f, yc+h/2.0f); //area
595 int xi1=(int)(area.botLeft.x+0.49999999f); //low x
596 int yi1=(int)(area.botLeft.y+0.49999999f); //low y
599 int xi2=(int)(area.topRight.x+0.5f); //top x
600 int yi2=(int)(area.topRight.y+0.5f); //top y (for loops)
602 float rr,gg,bb,aa; //red, green, blue and alpha components
604 int x,y; //loop counters
605 float s=0; //surface of all pixels
606 float cps; //surface of current crosssection
608 //width and height of area are greater than one pixel, so we can employ "ordinary" averaging
609 CxRect2 intBL, intTR; //bottom left and top right intersection
610 intBL=area.CrossSection(CxRect2(((float)xi1)-0.5f, ((float)yi1)-0.5f, ((float)xi1)+0.5f, ((float)yi1)+0.5f));
611 intTR=area.CrossSection(CxRect2(((float)xi2)-0.5f, ((float)yi2)-0.5f, ((float)xi2)+0.5f, ((float)yi2)+0.5f));
612 float wBL, wTR, hBL, hTR;
613 wBL=intBL.Width(); //width of bottom left pixel-area intersection
614 hBL=intBL.Height(); //height of bottom left...
615 wTR=intTR.Width(); //width of top right...
616 hTR=intTR.Height(); //height of top right...
618 AddAveragingCont(GetPixelColorWithOverflow(xi1,yi1,ofMethod,rplColor), wBL*hBL, rr, gg, bb, aa); //bottom left pixel
619 AddAveragingCont(GetPixelColorWithOverflow(xi2,yi1,ofMethod,rplColor), wTR*hBL, rr, gg, bb, aa); //bottom right pixel
620 AddAveragingCont(GetPixelColorWithOverflow(xi1,yi2,ofMethod,rplColor), wBL*hTR, rr, gg, bb, aa); //top left pixel
621 AddAveragingCont(GetPixelColorWithOverflow(xi2,yi2,ofMethod,rplColor), wTR*hTR, rr, gg, bb, aa); //top right pixel
623 for (x=xi1+1; x<xi2; x++) {
624 AddAveragingCont(GetPixelColorWithOverflow(x,yi1,ofMethod,rplColor), hBL, rr, gg, bb, aa); //bottom row
625 AddAveragingCont(GetPixelColorWithOverflow(x,yi2,ofMethod,rplColor), hTR, rr, gg, bb, aa); //top row
627 //leftmost and rightmost column
628 for (y=yi1+1; y<yi2; y++) {
629 AddAveragingCont(GetPixelColorWithOverflow(xi1,y,ofMethod,rplColor), wBL, rr, gg, bb, aa); //left column
630 AddAveragingCont(GetPixelColorWithOverflow(xi2,y,ofMethod,rplColor), wTR, rr, gg, bb, aa); //right column
632 for (y=yi1+1; y<yi2; y++) {
633 for (x=xi1+1; x<xi2; x++) {
634 color=GetPixelColorWithOverflow(x,y,ofMethod,rplColor);
638 #if CXIMAGE_SUPPORT_ALPHA
639 aa+=color.rgbReserved;
644 //width or height greater than one:
645 CxRect2 intersect; //intersection with current pixel
647 for (y=yi1; y<=yi2; y++) {
648 for (x=xi1; x<=xi2; x++) {
649 intersect=area.CrossSection(CxRect2(((float)x)-0.5f, ((float)y)-0.5f, ((float)x)+0.5f, ((float)y)+0.5f));
650 center=intersect.Center();
651 color=GetPixelColorInterpolated(center.x, center.y, inMethod, ofMethod, rplColor);
652 cps=intersect.Surface();
653 rr+=color.rgbRed*cps;
654 gg+=color.rgbGreen*cps;
655 bb+=color.rgbBlue*cps;
656 #if CXIMAGE_SUPPORT_ALPHA
657 aa+=color.rgbReserved*cps;
664 rr/=s; gg/=s; bb/=s; aa/=s;
665 if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;
666 if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;
667 if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;
668 #if CXIMAGE_SUPPORT_ALPHA
669 if (AlphaIsValid()) {
670 if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;
677 ////////////////////////////////////////////////////////////////////////////////
678 float CxImage::KernelBSpline(const float x)
680 if (x>2.0f) return 0.0f;
681 // thanks to Kristian Kratzenstein
683 float xm1 = x - 1.0f; // Was calculatet anyway cause the "if((x-1.0f) < 0)"
684 float xp1 = x + 1.0f;
685 float xp2 = x + 2.0f;
687 if ((xp2) <= 0.0f) a = 0.0f; else a = xp2*xp2*xp2; // Only float, not float -> double -> float
688 if ((xp1) <= 0.0f) b = 0.0f; else b = xp1*xp1*xp1;
689 if (x <= 0) c = 0.0f; else c = x*x*x;
690 if ((xm1) <= 0.0f) d = 0.0f; else d = xm1*xm1*xm1;
692 return (0.16666666666666666667f * (a - (4.0f * b) + (6.0f * c) - (4.0f * d)));
694 /* equivalent <Vladimir Kloucek>
698 return((2.0f+x)*(2.0f+x)*(2.0f+x)*0.16666666666666666667f);
700 return((4.0f+x*x*(-6.0f-3.0f*x))*0.16666666666666666667f);
702 return((4.0f+x*x*(-6.0f+3.0f*x))*0.16666666666666666667f);
704 return((2.0f-x)*(2.0f-x)*(2.0f-x)*0.16666666666666666667f);
709 ////////////////////////////////////////////////////////////////////////////////
711 * Bilinear interpolation kernel:
714 | 1-t , if 0 <= t <= 1
715 h(t) = | t+1 , if -1 <= t < 0
721 float CxImage::KernelLinear(const float t)
723 // if (0<=t && t<=1) return 1-t;
724 // if (-1<=t && t<0) return 1+t;
737 ////////////////////////////////////////////////////////////////////////////////
739 * Bicubic interpolation kernel (a=-1):
742 | 1-2|t|**2+|t|**3 , if |t| < 1
743 h(t) = | 4-8|t|+5|t|**2-|t|**3 , if 1<=|t|<2
749 float CxImage::KernelCubic(const float t)
751 float abs_t = (float)fabs(t);
752 float abs_t_sq = abs_t * abs_t;
753 if (abs_t<1) return 1-2*abs_t_sq+abs_t_sq*abs_t;
754 if (abs_t<2) return 4 - 8*abs_t +5*abs_t_sq - abs_t_sq*abs_t;
758 ////////////////////////////////////////////////////////////////////////////////
760 * Bicubic kernel (for a=-1 it is the same as BicubicKernel):
763 | (a+2)|t|**3 - (a+3)|t|**2 + 1 , |t| <= 1
764 h(t) = | a|t|**3 - 5a|t|**2 + 8a|t| - 4a , 1 < |t| <= 2
768 * Often used values for a are -1 and -1/2.
770 float CxImage::KernelGeneralizedCubic(const float t, const float a)
772 float abs_t = (float)fabs(t);
773 float abs_t_sq = abs_t * abs_t;
774 if (abs_t<1) return (a+2)*abs_t_sq*abs_t - (a+3)*abs_t_sq + 1;
775 if (abs_t<2) return a*abs_t_sq*abs_t - 5*a*abs_t_sq + 8*a*abs_t - 4*a;
779 ////////////////////////////////////////////////////////////////////////////////
781 * Lanczos windowed sinc interpolation kernel with radius r.
784 h(t) = | sinc(t)*sinc(t/r) , if |t|<r
790 float CxImage::KernelLanczosSinc(const float t, const float r)
792 if (fabs(t) > r) return 0;
796 return (float)((sin(pit)/pit) * (sin(pitd)/pitd));
799 ////////////////////////////////////////////////////////////////////////////////
800 float CxImage::KernelBox(const float x)
808 ////////////////////////////////////////////////////////////////////////////////
809 float CxImage::KernelHermite(const float x)
814 return (-2.0f*x-3.0f)*x*x+1.0f;
816 return (2.0f*x-3.0f)*x*x+1.0f;
818 // if (fabs(x)>1) return 0.0f;
819 // return(0.5f+0.5f*(float)cos(PI*x));
821 ////////////////////////////////////////////////////////////////////////////////
822 float CxImage::KernelHanning(const float x)
824 if (fabs(x)>1) return 0.0f;
825 return (0.5f+0.5f*(float)cos(PI*x))*((float)sin(PI*x)/(PI*x));
827 ////////////////////////////////////////////////////////////////////////////////
828 float CxImage::KernelHamming(const float x)
833 return 0.92f*(-2.0f*x-3.0f)*x*x+1.0f;
835 return 0.92f*(2.0f*x-3.0f)*x*x+1.0f;
837 // if (fabs(x)>1) return 0.0f;
838 // return(0.54f+0.46f*(float)cos(PI*x));
840 ////////////////////////////////////////////////////////////////////////////////
841 float CxImage::KernelSinc(const float x)
845 return((float)sin(PI*x)/(PI*x));
847 ////////////////////////////////////////////////////////////////////////////////
848 float CxImage::KernelBlackman(const float x)
850 //if (fabs(x)>1) return 0.0f;
851 return (0.42f+0.5f*(float)cos(PI*x)+0.08f*(float)cos(2.0f*PI*x));
853 ////////////////////////////////////////////////////////////////////////////////
854 float CxImage::KernelBessel_J1(const float x)
863 0.581199354001606143928050809e+21,
864 -0.6672106568924916298020941484e+20,
865 0.2316433580634002297931815435e+19,
866 -0.3588817569910106050743641413e+17,
867 0.2908795263834775409737601689e+15,
868 -0.1322983480332126453125473247e+13,
869 0.3413234182301700539091292655e+10,
870 -0.4695753530642995859767162166e+7,
871 0.270112271089232341485679099e+4
875 0.11623987080032122878585294e+22,
876 0.1185770712190320999837113348e+20,
877 0.6092061398917521746105196863e+17,
878 0.2081661221307607351240184229e+15,
879 0.5243710262167649715406728642e+12,
880 0.1013863514358673989967045588e+10,
881 0.1501793594998585505921097578e+7,
882 0.1606931573481487801970916749e+4,
888 for (i=7; i >= 0; i--)
895 ////////////////////////////////////////////////////////////////////////////////
896 float CxImage::KernelBessel_P1(const float x)
905 0.352246649133679798341724373e+5,
906 0.62758845247161281269005675e+5,
907 0.313539631109159574238669888e+5,
908 0.49854832060594338434500455e+4,
909 0.2111529182853962382105718e+3,
910 0.12571716929145341558495e+1
914 0.352246649133679798068390431e+5,
915 0.626943469593560511888833731e+5,
916 0.312404063819041039923015703e+5,
917 0.4930396490181088979386097e+4,
918 0.2030775189134759322293574e+3,
924 for (i=4; i >= 0; i--)
926 p = p*(8.0/x)*(8.0/x)+Pone[i];
927 q = q*(8.0/x)*(8.0/x)+Qone[i];
931 ////////////////////////////////////////////////////////////////////////////////
932 float CxImage::KernelBessel_Q1(const float x)
941 0.3511751914303552822533318e+3,
942 0.7210391804904475039280863e+3,
943 0.4259873011654442389886993e+3,
944 0.831898957673850827325226e+2,
945 0.45681716295512267064405e+1,
946 0.3532840052740123642735e-1
950 0.74917374171809127714519505e+4,
951 0.154141773392650970499848051e+5,
952 0.91522317015169922705904727e+4,
953 0.18111867005523513506724158e+4,
954 0.1038187585462133728776636e+3,
960 for (i=4; i >= 0; i--)
962 p = p*(8.0/x)*(8.0/x)+Pone[i];
963 q = q*(8.0/x)*(8.0/x)+Qone[i];
967 ////////////////////////////////////////////////////////////////////////////////
968 float CxImage::KernelBessel_Order1(float x)
978 return(p*KernelBessel_J1(x));
979 q = (float)sqrt(2.0f/(PI*x))*(float)(KernelBessel_P1(x)*(1.0f/sqrt(2.0f)*(sin(x)-cos(x)))-8.0f/x*KernelBessel_Q1(x)*
980 (-1.0f/sqrt(2.0f)*(sin(x)+cos(x))));
985 ////////////////////////////////////////////////////////////////////////////////
986 float CxImage::KernelBessel(const float x)
990 return(KernelBessel_Order1(PI*x)/(2.0f*x));
992 ////////////////////////////////////////////////////////////////////////////////
993 float CxImage::KernelGaussian(const float x)
995 return (float)(exp(-2.0f*x*x)*0.79788456080287f/*sqrt(2.0f/PI)*/);
997 ////////////////////////////////////////////////////////////////////////////////
998 float CxImage::KernelQuadratic(const float x)
1003 return(0.5f*(x+1.5f)*(x+1.5f));
1007 return(0.5f*(x-1.5f)*(x-1.5f));
1010 ////////////////////////////////////////////////////////////////////////////////
1011 float CxImage::KernelMitchell(const float x)
1013 #define KM_B (1.0f/3.0f)
1014 #define KM_C (1.0f/3.0f)
1015 #define KM_P0 (( 6.0f - 2.0f * KM_B ) / 6.0f)
1016 #define KM_P2 ((-18.0f + 12.0f * KM_B + 6.0f * KM_C) / 6.0f)
1017 #define KM_P3 (( 12.0f - 9.0f * KM_B - 6.0f * KM_C) / 6.0f)
1018 #define KM_Q0 (( 8.0f * KM_B + 24.0f * KM_C) / 6.0f)
1019 #define KM_Q1 ((-12.0f * KM_B - 48.0f * KM_C) / 6.0f)
1020 #define KM_Q2 (( 6.0f * KM_B + 30.0f * KM_C) / 6.0f)
1021 #define KM_Q3 (( -1.0f * KM_B - 6.0f * KM_C) / 6.0f)
1026 return(KM_Q0-x*(KM_Q1-x*(KM_Q2-x*KM_Q3)));
1028 return(KM_P0+x*x*(KM_P2-x*KM_P3));
1030 return(KM_P0+x*x*(KM_P2+x*KM_P3));
1032 return(KM_Q0+x*(KM_Q1+x*(KM_Q2+x*KM_Q3)));
1035 ////////////////////////////////////////////////////////////////////////////////
1036 float CxImage::KernelCatrom(const float x)
1041 return(0.5f*(4.0f+x*(8.0f+x*(5.0f+x))));
1043 return(0.5f*(2.0f+x*x*(-5.0f-3.0f*x)));
1045 return(0.5f*(2.0f+x*x*(-5.0f+3.0f*x)));
1047 return(0.5f*(4.0f+x*(-8.0f+x*(5.0f-x))));
1050 ////////////////////////////////////////////////////////////////////////////////
1051 float CxImage::KernelPower(const float x, const float a)
1053 if (fabs(x)>1) return 0.0f;
1054 return (1.0f - (float)fabs(pow(x,a)));
1056 ////////////////////////////////////////////////////////////////////////////////