/*========================================================================= Program: gdcm Module: $RCSfile: WriteDicomAsJPEG.cxx,v $ Language: C++ Date: $Date: 2005/10/18 19:54:25 $ Version: $Revision: 1.3 $ Copyright (c) CREATIS (Centre de Recherche et d'Applications en Traitement de l'Image). All rights reserved. See Doc/License.txt or http://www.creatis.insa-lyon.fr/Public/Gdcm/License.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #include "gdcmFile.h" #include "gdcmFileHelper.h" #include #include #include extern "C" { #include "gdcmjpeg/8/jconfig.h" #include "gdcmjpeg/8/jpeglib.h" #include "gdcmjpeg/8/jinclude.h" #include "gdcmjpeg/8/jerror.h" } #include "gdcmJPEGFragment.h" #include #include #include "jdatasrc.cxx" #include "jdatadst.cxx" bool CreateOneFrame (std::ostream *fp, void *input_buffer, int fragment_size, int image_width, int image_height, int sample_pixel, int quality) { JSAMPLE *image_buffer = (JSAMPLE*) input_buffer; /* This struct contains the JPEG compression parameters and pointers to * working space (which is allocated as needed by the JPEG library). * It is possible to have several such structures, representing multiple * compression/decompression processes, in existence at once. We refer * to any one struct (and its associated working data) as a "JPEG object". */ struct jpeg_compress_struct cinfo; /* This struct represents a JPEG error handler. It is declared separately * because applications often want to supply a specialized error handler * (see the second half of this file for an example). But here we just * take the easy way out and use the standard error handler, which will * print a message on stderr and call exit() if compression fails. * Note that this struct must live as long as the main JPEG parameter * struct, to avoid dangling-pointer problems. */ struct jpeg_error_mgr jerr; /* More stuff */ //FILE* outfile; /* target FILE* / JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */ int row_stride; /* physical row width in image buffer */ /* Step 1: allocate and initialize JPEG compression object */ /* We have to set up the error handler first, in case the initialization * step fails. (Unlikely, but it could happen if you are out of memory.) * This routine fills in the contents of struct jerr, and returns jerr's * address which we place into the link field in cinfo. */ cinfo.err = jpeg_std_error(&jerr); /* Now we can initialize the JPEG compression object. */ jpeg_create_compress(&cinfo); /* Step 2: specify data destination (eg, a file) */ /* Note: steps 2 and 3 can be done in either order. */ /* Here we use the library-supplied code to send compressed data to a * stdio stream. You can also write your own code to do something else. * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that * requires it in order to write binary files. */ // if ((outfile = fopen(filename, "wb")) == NULL) { // fprintf(stderr, "can't open %s\n", filename); // exit(1); // // } jpeg_stdio_dest(&cinfo, fp, fragment_size); /* Step 3: set parameters for compression */ /* First we supply a description of the input image. * Four fields of the cinfo struct must be filled in: */ cinfo.image_width = image_width;/* image width and height, in pixels */ cinfo.image_height = image_height; if ( sample_pixel == 3 ) { cinfo.input_components = 3; /* # of color components per pixel */ cinfo.in_color_space = JCS_RGB; /* colorspace of input image */ } else { cinfo.input_components = 1; /* # of color components per pixel */ cinfo.in_color_space = JCS_GRAYSCALE; /* colorspace of input image */ } /* Now use the library's routine to set default compression parameters. * (You must set at least cinfo.in_color_space before calling this, * since the defaults depend on the source color space.) */ jpeg_set_defaults(&cinfo); /* Now you can set any non-default parameters you wish to. * Here we just illustrate the use of quality (quantization table) scaling: */ jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */); /* Step 4: Start compressor */ /* TRUE ensures that we will write a complete interchange-JPEG file. * Pass TRUE unless you are very sure of what you're doing. */ jpeg_start_compress(&cinfo, TRUE); /* Step 5: while (scan lines remain to be written) */ /* jpeg_write_scanlines(...); */ /* Here we use the library's state variable cinfo.next_scanline as the * loop counter, so that we don't have to keep track ourselves. * To keep things simple, we pass one scanline per call; you can pass * more if you wish, though. */ if (sample_pixel == 3) { row_stride = image_width * 3;/* JSAMPLEs per row in image_buffer */ } else { row_stride = image_width * 1;/* JSAMPLEs per row in image_buffer */ } while (cinfo.next_scanline < cinfo.image_height) { /* jpeg_write_scanlines expects an array of pointers to scanlines. * Here the array is only one element long, but you could pass * more than one scanline at a time if that's more convenient. */ row_pointer[0] = & image_buffer[cinfo.next_scanline * row_stride]; (void) jpeg_write_scanlines(&cinfo, row_pointer, 1); } /* Step 6: Finish compression */ jpeg_finish_compress(&cinfo); /* After finish_compress, we can close the output file. */ // fclose(fp); --> the caller will close (multiframe treatement) /* Step 7: release JPEG compression object */ /* This is an important step since it will release a good deal of memory. */ jpeg_destroy_compress(&cinfo); /* And we're done! */ return true; } // Open a dicom file and compress it as JPEG stream int main(int argc, char *argv[]) { if( argc < 2) return 1; std::string filename = argv[1]; // Step 1 : Create the header of the image gdcm::File *f = new gdcm::File(); f->SetLoadMode ( gdcm::LD_ALL ); // Load everything f->SetFileName( filename ); f->Load(); gdcm::FileHelper *tested = new gdcm::FileHelper( f ); std::string PixelType = tested->GetFile()->GetPixelType(); int xsize = f->GetXSize(); int ysize = f->GetYSize(); int samplesPerPixel = f->GetSamplesPerPixel(); size_t testedDataSize = tested->GetImageDataSize(); std::cerr << "testedDataSize:" << testedDataSize << std::endl; uint8_t *testedImageData = tested->GetImageData(); //std::ofstream *of = new std::ofstream("/tmp/jpeg.jpg"); std::ostringstream *of = new std::ostringstream(); std::cout << "X: " << xsize << std::endl; std::cout << "Y: " << ysize << std::endl; std::cout << "Sample: " << samplesPerPixel << std::endl; int fragment_size = xsize*ysize*samplesPerPixel; CreateOneFrame(of, testedImageData, fragment_size, xsize, ysize, samplesPerPixel, 100); if( !f->IsReadable() ) { std::cerr << "-------------------------------\n" << "Error while creating the file\n" << "This file is considered to be not readable\n"; return 1; } std::streambuf* sb = of->rdbuf(); (void)sb; // Step 1 : Create the header of the image gdcm::File *fileToBuild = new gdcm::File(); std::ostringstream str; // Set the image size str.str(""); str << xsize; fileToBuild->InsertEntryString(str.str(),0x0028,0x0011); // Columns str.str(""); str << ysize; fileToBuild->InsertEntryString(str.str(),0x0028,0x0010); // Rows //if(img.sizeZ>1) //{ // str.str(""); // str << img.sizeZ; // fileToBuild->InsertEntryString(str.str(),0x0028,0x0008); // Number of Frames //} // Set the pixel type str.str(""); str << 8; //img.componentSize; fileToBuild->InsertEntryString(str.str(),0x0028,0x0100); // Bits Allocated str.str(""); str << 8; //img.componentUse; fileToBuild->InsertEntryString(str.str(),0x0028,0x0101); // Bits Stored str.str(""); str << 7; //( img.componentSize - 1 ); fileToBuild->InsertEntryString(str.str(),0x0028,0x0102); // High Bit // Set the pixel representation str.str(""); str << 0; //img.sign; fileToBuild->InsertEntryString(str.str(),0x0028,0x0103); // Pixel Representation // Set the samples per pixel str.str(""); str << samplesPerPixel; //img.components; fileToBuild->InsertEntryString(str.str(),0x0028,0x0002); // Samples per Pixel // Step 2 : Create the output image // std::cout << "2..."; // if( img.componentSize%8 > 0 ) // { // img.componentSize += 8-img.componentSize%8; // } size_t size = xsize * ysize * 1 /*Z*/ * samplesPerPixel /* * img.componentSize / 8*/; uint8_t *imageData = new uint8_t[size]; gdcm::FileHelper *fileH = new gdcm::FileHelper(fileToBuild); //fileH->SetImageData(imageData,size); assert( size == testedDataSize ); size = of->str().size(); //size = sb->in_avail(); std::cerr << "Size JPEG:" << size << std::endl; //fileH->SetImageData((uint8_t*)of->str().c_str(), size); memcpy(imageData, of->str().c_str(), size); fileH->SetImageData(imageData, size); //str::string *s = of->str(); //fileH->SetWriteTypeToDcmExplVR(); fileH->SetWriteTypeToJPEG( ); std::string fileName = "/tmp/bla.dcm"; if( !fileH->Write(fileName) ) { std::cerr << "Badddd" << std::endl; } //of->close(); std::ofstream out("/tmp/jpeg2.jpg"); //out.write( of->str(), of //out << of->str(); //rdbuf is faster than going through str() out.write( (char*)imageData, size); std::cerr << "JPEG marker is: " << imageData[6] << imageData[7] << imageData[8] << imageData[9] << std::endl; //out.rdbuf( *sb ); out.close(); delete of; delete f; delete tested; delete fileToBuild; delete fileH; return 0; }