#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // ------------------------------------------------------------------------- const unsigned int Dim = 2; typedef unsigned char TPixel; typedef double TScalar; typedef itk::Image< TPixel, Dim > TImage; typedef itk::Image< TScalar, Dim > TScalarImage; typedef itk::ImageToVTKImageFilter< TImage > TVTKImage; typedef itk::ImageFileReader< TImage > TImageReader; typedef fpa::Image::Dijkstra< TScalarImage, TScalar > TFrontAlgorithm; typedef fpa::VTK::Image2DObserver< TFrontAlgorithm, vtkRenderWindow > TObserver; // ------------------------------------------------------------------------- class InvertPixelFunctor { public: InvertPixelFunctor( ) { } virtual ~InvertPixelFunctor( ) { } bool operator!=( const InvertPixelFunctor& other ) const { return( false ); } bool operator==( const InvertPixelFunctor& other ) const { return( !( *this != other ) ); } inline TScalar operator()( const TScalar& A ) const { return( TScalar( 1 ) / std::pow( TScalar( 1 ) + A, TScalar( 4 ) ) ); } }; // ------------------------------------------------------------------------- int main( int argc, char* argv[] ) { if( argc < 3 ) { std::cerr << "Usage: " << argv[ 0 ] << " input_image neighborhood_order [stop_at_one_front]" << std::endl; return( 1 ); } // fi std::string input_image_fn = argv[ 1 ]; unsigned int neighborhood_order = std::atoi( argv[ 2 ] ); bool stop_at_one_front = false; if( 3 < argc ) stop_at_one_front = ( std::atoi( argv[ 3 ] ) == 1 ); // Read image TImageReader::Pointer input_image_reader = TImageReader::New( ); input_image_reader->SetFileName( input_image_fn ); try { input_image_reader->Update( ); } catch( itk::ExceptionObject& err ) { std::cerr << "Error caught: " << err << std::endl; return( 1 ); } // yrt TImage::ConstPointer input_image = input_image_reader->GetOutput( ); TVTKImage::Pointer vtk_image = TVTKImage::New( ); vtk_image->SetInput( input_image ); vtk_image->Update( ); // VTK visualization vtkSmartPointer< vtkImageActor > actor = vtkSmartPointer< vtkImageActor >::New( ); actor->SetInputData( vtk_image->GetOutput( ) ); vtkSmartPointer< vtkRenderer > renderer = vtkSmartPointer< vtkRenderer >::New( ); renderer->SetBackground( 0.1, 0.2, 0.7 ); renderer->AddActor( actor ); vtkSmartPointer< vtkRenderWindow > window = vtkSmartPointer< vtkRenderWindow >::New( ); window->SetSize( 800, 800 ); window->AddRenderer( renderer ); // VTK interaction vtkSmartPointer< vtkInteractorStyleImage > imageStyle = vtkSmartPointer< vtkInteractorStyleImage >::New( ); vtkSmartPointer< vtkRenderWindowInteractor > interactor = vtkSmartPointer< vtkRenderWindowInteractor >::New( ); interactor->SetInteractorStyle( imageStyle ); window->SetInteractor( interactor ); window->Render( ); // Create the widget and its representation vtkSmartPointer< vtkPointHandleRepresentation3D > handle = vtkSmartPointer< vtkPointHandleRepresentation3D >::New( ); handle->GetProperty( )->SetColor( 1, 0, 0 ); vtkSmartPointer< vtkSeedRepresentation > rep = vtkSmartPointer< vtkSeedRepresentation >::New( ); rep->SetHandleRepresentation( handle ); vtkSmartPointer< vtkSeedWidget > widget = vtkSmartPointer< vtkSeedWidget >::New( ); widget->SetInteractor( interactor ); widget->SetRepresentation( rep ); // Let some interaction interactor->Initialize( ); window->Render( ); widget->On( ); interactor->Start( ); // Compute cost map typedef itk::MinimumMaximumImageCalculator< TImage > TMinMax; typedef itk::InvertIntensityImageFilter< TImage > TInvert; typedef itk::DanielssonDistanceMapImageFilter< TImage, TScalarImage > TDanielsson; typedef itk::UnaryFunctorImageFilter< TScalarImage, TScalarImage, InvertPixelFunctor > TInvertFunctor; TMinMax::Pointer input_image_min_max = TMinMax::New( ); input_image_min_max->SetImage( input_image ); input_image_min_max->Compute( ); TInvert::Pointer invert = TInvert::New( ); invert->SetInput( input_image ); invert->SetMaximum( input_image_min_max->GetMaximum( ) ); TDanielsson::Pointer danielsson = TDanielsson::New( ); danielsson->SetInput( invert->GetOutput( ) ); danielsson->InputIsBinaryOn( ); danielsson->SquaredDistanceOff( ); danielsson->UseImageSpacingOn( ); TInvertFunctor::Pointer invert_pixels = TInvertFunctor::New( ); invert_pixels->SetInput( danielsson->GetOutput( ) ); invert_pixels->Update( ); // Configure observer TObserver::Pointer obs = TObserver::New( ); obs->SetImage( invert_pixels->GetOutput( ), window ); // Configure algorithm TFrontAlgorithm::Pointer algorithm = TFrontAlgorithm::New( ); for( unsigned int s = 0; s < rep->GetNumberOfSeeds( ); s++ ) { double pos[ 3 ]; rep->GetSeedWorldPosition( s, pos ); TImage::PointType pnt; pnt[ 0 ] = pos[ 0 ]; pnt[ 1 ] = pos[ 1 ]; TImage::IndexType idx; if( input_image->TransformPhysicalPointToIndex( pnt, idx ) ) { algorithm->AddSeed( idx, 0 ); std::cout << " Seed --> " << idx << std::endl; } // fi } // rof algorithm->AddObserver( itk::AnyEvent( ), obs ); algorithm->ThrowEventsOn( ); algorithm->SetInput( invert_pixels->GetOutput( ) ); algorithm->SetNeighborhoodOrder( neighborhood_order ); algorithm->SetStopAtOneFront( stop_at_one_front ); algorithm->Update( ); // One last interaction window->Render( ); interactor->Start( ); return( 0 ); } // eof - $RCSfile$