// gdcmFile.cxx //----------------------------------------------------------------------------- #include "gdcmFile.h" #include "gdcmUtil.h" #include "jpeg/ljpg/jpegless.h" typedef std::pair IterHT; //----------------------------------------------------------------------------- // Constructor / Destructor /** * \ingroup gdcmFile * \brief Constructor dedicated to writing a new DICOMV3 part10 compliant * file (see SetFileName, SetDcmTag and Write) * Opens (in read only and when possible) an existing file and checks * for DICOM compliance. Returns NULL on failure. * \note the in-memory representation of all available tags found in * the DICOM header is post-poned to first header information access. * This avoid a double parsing of public part of the header when * one sets an a posteriori shadow dictionary (efficiency can be * seen as a side effect). * @param header file to be opened for reading datas * @return */ gdcmFile::gdcmFile(gdcmHeader *header) { Header=header; SelfHeader=false; PixelRead=-1; // no ImageData read yet. if (Header->IsReadable()) SetPixelDataSizeFromHeader(); } /** * \ingroup gdcmFile * \brief Constructor dedicated to writing a new DICOMV3 part10 compliant * file (see SetFileName, SetDcmTag and Write) * Opens (in read only and when possible) an existing file and checks * for DICOM compliance. Returns NULL on failure. * \note the in-memory representation of all available tags found in * the DICOM header is post-poned to first header information access. * This avoid a double parsing of public part of the header when * one sets an a posteriori shadow dictionary (efficiency can be * seen as a side effect). * @param filename file to be opened for parsing */ gdcmFile::gdcmFile(std::string & filename) { Header=new gdcmHeader(filename.c_str()); SelfHeader=true; PixelRead=-1; // no ImageData read yet. if (Header->IsReadable()) SetPixelDataSizeFromHeader(); } /** * \ingroup gdcmFile * \brief Constructor dedicated to writing a new DICOMV3 part10 compliant * file (see SetFileName, SetDcmTag and Write) * Opens (in read only and when possible) an existing file and checks * for DICOM compliance. Returns NULL on failure. * \note the in-memory representation of all available tags found in * the DICOM header is post-poned to first header information access. * This avoid a double parsing of public part of the header when * one sets an a posteriori shadow dictionary (efficiency can be * seen as a side effect). * @param filename file to be opened for parsing */ gdcmFile::gdcmFile(const char * filename) { Header=new gdcmHeader(filename); SelfHeader=true; PixelRead=-1; // no ImageData read yet. if (Header->IsReadable()) SetPixelDataSizeFromHeader(); } /** * \ingroup gdcmFile * \brief canonical destructor * \note If the gdcmHeader is created by the gdcmFile, it is destroyed * by the gdcmFile */ gdcmFile::~gdcmFile(void) { if(SelfHeader) delete Header; Header=NULL; } //----------------------------------------------------------------------------- // Print //----------------------------------------------------------------------------- // Public /** * \ingroup gdcmFile * \brief returns the gdcmHeader *Header * @return */ gdcmHeader *gdcmFile::GetHeader(void) { return(Header); } /** * \ingroup gdcmFile * \brief computes the length (in bytes) to ALLOCATE to receive the * image(s) pixels (multiframes taken into account) * \warning : it is NOT the group 7FE0 length * (no interest for compressed images). * @return length to allocate */ void gdcmFile::SetPixelDataSizeFromHeader(void) { // see PS 3.3-2003 : C.7.6.3.2.1 // // MONOCHROME1 // MONOCHROME2 // PALETTE COLOR // RGB // HSV (Retired) // ARGB (Retired) // CMYK (Retired) // YBR_FULL // YBR_FULL_422 (no LUT, no Palette) // YBR_PARTIAL_422 // YBR_ICT // YBR_RCT // LUT's // ex : gdcm-US-ALOKA-16.dcm // 0028|1221 [OW] [Segmented Red Palette Color Lookup Table Data] // 0028|1222 [OW] [Segmented Green Palette Color Lookup Table Data] // 0028|1223 [OW] [Segmented Blue Palette Color Lookup Table Data] // ex : OT-PAL-8-face.dcm // 0028|1201 [US] [Red Palette Color Lookup Table Data] // 0028|1202 [US] [Green Palette Color Lookup Table Data] // 0028|1203 [US] [Blue Palette Color Lookup Table Data] int nb; std::string str_nb; str_nb=Header->GetEntryByNumber(0x0028,0x0100); if (str_nb == GDCM_UNFOUND ) { nb = 16; } else { nb = atoi(str_nb.c_str() ); if (nb == 12) nb =16; } lgrTotale = lgrTotaleRaw = Header->GetXSize() * Header->GetYSize() * Header->GetZSize() * (nb/8)* Header->GetSamplesPerPixel(); std::string str_PhotometricInterpretation = Header->GetEntryByNumber(0x0028,0x0004); /*if ( str_PhotometricInterpretation == "PALETTE COLOR " )*/ // pb when undealt Segmented Palette Color if (Header->HasLUT()) { lgrTotale*=3; } } /** * \ingroup gdcmFile * \brief Returns the size (in bytes) of required memory to hold * the pixel data represented in this file. * @return The size of pixel data in bytes. */ size_t gdcmFile::GetImageDataSize(void) { return (lgrTotale); } /** * \ingroup gdcmFile * \brief Returns the size (in bytes) of required memory to hold * the pixel data represented in this file, when user DOESN'T want * to get RGB pixels image when it's stored as a PALETTE COLOR image * -the (vtk) user is supposed to know how deal with LUTs- * \warning to be used with GetImagePixelsRaw() * @return The size of pixel data in bytes. */ size_t gdcmFile::GetImageDataSizeRaw(void) { return (lgrTotaleRaw); } /** * \ingroup gdcmFile * \brief Allocates necessary memory, copies the pixel data * (image[s]/volume[s]) to newly allocated zone. * Transforms YBR pixels into RGB pixels if any * Transforms 3 planes R, G, B into a single RGB Plane * Transforms single Grey plane + 3 Palettes into a RGB Plane * @return Pointer to newly allocated pixel data. * NULL if alloc fails */ void * gdcmFile::GetImageData (void) { PixelData = (void *) malloc(lgrTotale); if (PixelData) GetImageDataIntoVector(PixelData, lgrTotale); PixelRead=0; // no PixelRaw return(PixelData); } /** * \ingroup gdcmFile * \brief Copies at most MaxSize bytes of pixel data to caller's * memory space. * \warning This function was designed to avoid people that want to build * a volume from an image stack to need first to get the image pixels * and then move them to the volume area. * It's absolutely useless for any VTK user since vtk chooses * to invert the lines of an image, that is the last line comes first * (for some axis related reasons?). Hence he will have * to load the image line by line, starting from the end. * VTK users have to call GetImageData * * @param destination Address (in caller's memory space) at which the * pixel data should be copied * @param MaxSize Maximum number of bytes to be copied. When MaxSize * is not sufficient to hold the pixel data the copy is not * executed (i.e. no partial copy). * @return On success, the number of bytes actually copied. Zero on * failure e.g. MaxSize is lower than necessary. */ size_t gdcmFile::GetImageDataIntoVector (void* destination, size_t MaxSize) { size_t l = GetImageDataIntoVectorRaw (destination, MaxSize); PixelRead=0 ; // no PixelRaw if (!Header->HasLUT()) return lgrTotale; // from Lut R + Lut G + Lut B unsigned char * newDest = (unsigned char *)malloc(lgrTotale); unsigned char * a = (unsigned char *)destination; unsigned char * lutRGBA = Header->GetLUTRGBA(); if (lutRGBA) { int l = lgrTotaleRaw; memmove(newDest, destination, l);// move Gray pixels to temp area int j; for (int i=0;iSetEntryByNumber(spp,0x0028,0x0002); std::string rgb= "RGB "; // Photometric Interpretation Header->SetEntryByNumber(rgb,0x0028,0x0004); std::string planConfig = "0"; // Planar Configuration Header->SetEntryByNumber(planConfig,0x0028,0x0006); } else { // need to make RGB Pixels (?) // from grey Pixels (?!) // and Gray Lut (!?!) // or Segmented xxx Palette Color Lookup Table Data and so on // Oops! I get one (gdcm-US-ALOKA-16.dcm) // No idea how to manage such an image // It seems that *no Dicom Viewer* has any idea :-( // Segmented xxx Palette Color are *more* than 65535 long ?!? std::string rgb= "MONOCHROME1 "; // Photometric Interpretation Header->SetEntryByNumber(rgb,0x0028,0x0004); } // TODO : Drop Palette Color out of the Header? return lgrTotale; } /** * \ingroup gdcmFile * \brief Allocates necessary memory, copies the pixel data * (image[s]/volume[s]) to newly allocated zone. * Transforms YBR pixels into RGB pixels if any * Transforms 3 planes R, G, B into a single RGB Plane * DOES NOT transform Grey plane + 3 Palettes into a RGB Plane * @return Pointer to newly allocated pixel data. * \ NULL if alloc fails */ void * gdcmFile::GetImageDataRaw (void) { if (Header->HasLUT()) lgrTotale /= 3; // TODO Let gdcmHeadar user a chance // to get the right value // Create a member lgrTotaleRaw ??? PixelData = (void *) malloc(lgrTotale); if (PixelData) GetImageDataIntoVectorRaw(PixelData, lgrTotale); PixelRead=1; // PixelRaw return(PixelData); } /** * \ingroup gdcmFile * \brief Copies at most MaxSize bytes of pixel data to caller's * memory space. * \warning This function was designed to avoid people that want to build * a volume from an image stack to need first to get the image pixels * and then move them to the volume area. * It's absolutely useless for any VTK user since vtk chooses * to invert the lines of an image, that is the last line comes first * (for some axis related reasons?). Hence he will have * to load the image line by line, starting from the end. * VTK users hace to call GetImageData * \warning DOES NOT transform the Grey Plane + Palette Color (if any) * into a single RGB Pixels Plane * the (VTK) user will manage the palettes * * @param destination Address (in caller's memory space) at which the * pixel data should be copied * @param MaxSize Maximum number of bytes to be copied. When MaxSize * is not sufficient to hold the pixel data the copy is not * executed (i.e. no partial copy). * @return On success, the number of bytes actually copied. Zero on * failure e.g. MaxSize is lower than necessary. */ size_t gdcmFile::GetImageDataIntoVectorRaw (void* destination, size_t MaxSize) { int nb, nbu, highBit, signe; std::string str_nbFrames, str_nb, str_nbu, str_highBit, str_signe; PixelRead=1 ; // PixelRaw if ( lgrTotale > MaxSize ) { dbg.Verbose(0, "gdcmFile::GetImageDataIntoVector: pixel data bigger" "than caller's expected MaxSize"); return (size_t)0; } (void)ReadPixelData(destination); // Number of Bits Allocated for storing a Pixel str_nb = Header->GetEntryByNumber(0x0028,0x0100); if (str_nb == GDCM_UNFOUND ) { nb = 16; } else { nb = atoi(str_nb.c_str() ); } // Number of Bits actually used str_nbu=Header->GetEntryByNumber(0x0028,0x0101); if (str_nbu == GDCM_UNFOUND ) { nbu = nb; } else { nbu = atoi(str_nbu.c_str() ); } // High Bit Position str_highBit=Header->GetEntryByNumber(0x0028,0x0102); if (str_highBit == GDCM_UNFOUND ) { highBit = nb - 1; } else { highBit = atoi(str_highBit.c_str() ); } // Pixel sign // 0 = Unsigned // 1 = Signed str_signe=Header->GetEntryByNumber(0x0028,0x0103); if (str_signe == GDCM_UNFOUND ) { signe = 0; // default is unsigned } else { signe = atoi(str_signe.c_str() ); } // re arange bytes inside the integer (processor endianity) if (nb != 8) SwapZone(destination, Header->GetSwapCode(), lgrTotale, nb); // to avoid pb with some xmedcon breakers images if (nb==16 && nbu> (nb-nbu); guint16 *deb = (guint16 *)destination; for(int i = 0; i> (nbu-highBit-1)) & mask; deb ++; } } else if (nb == 32 ) { guint32 mask = 0xffffffff; mask = mask >> (nb-nbu); guint32 *deb = (guint32 *)destination; for(int i = 0; i> (nbu-highBit-1)) & mask; deb ++; } } else { dbg.Verbose(0, "gdcmFile::GetImageDataIntoVector: wierd image"); return (size_t)0; } } // DO NOT remove this commented out code . // Nobody knows what's expecting you ... // Just to 'see' what was actually read on disk :-( // FILE * f2; // f2 = fopen("SpuriousFile.RAW","wb"); // fwrite(destination,lgrTotale,1,f2); // fclose(f2); // Deal with the color // ------------------- std::string str_PhotometricInterpretation = Header->GetEntryByNumber(0x0028,0x0004); if ( (str_PhotometricInterpretation == "MONOCHROME1 ") || (str_PhotometricInterpretation == "MONOCHROME2 ") ) { return lgrTotale; } // Planar configuration = 0 : Pixels are already RGB // Planar configuration = 1 : 3 planes : R, G, B // Planar configuration = 2 : 1 gray Plane + 3 LUT // Well ... supposed to be ! // See US-PAL-8-10x-echo.dcm: PlanarConfiguration=0, // PhotometricInterpretation=PALETTE COLOR // and heuristic has to be found :-( int planConf=Header->GetPlanarConfiguration(); // 0028,0006 // Whatever Planar Configuration is, // "PALETTE COLOR " implies that we deal with the palette. if (str_PhotometricInterpretation == "PALETTE COLOR ") planConf=2; switch (planConf) { case 0: // Pixels are already RGB break; case 1: { if (str_PhotometricInterpretation == "YBR_FULL") { // Warning : YBR_FULL_422 acts as RGB // : we need to make RGB Pixels from Planes Y,cB,cR // to see the tricks about YBR_FULL, YBR_FULL_422, // YBR_PARTIAL_422, YBR_ICT, YBR_RCT have a look at : // ftp://medical.nema.org/medical/dicom/final/sup61_ft.pdf // and be *very* affraid // int l = Header->GetXSize()*Header->GetYSize(); int nbFrames = Header->GetZSize(); unsigned char * newDest = (unsigned char*) malloc(lgrTotale); unsigned char *x = newDest; unsigned char * a = (unsigned char *)destination; unsigned char * b = a + l; unsigned char * c = b + l; double R,G,B; // TODO : Replace by the 'well known' // integer computation counterpart // see http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf // for code optimisation for (int i=0;i255.0) R=255.0; if (G>255.0) G=255.0; if (B>255.0) B=255.0; *(x++) = (unsigned char)R; *(x++) = (unsigned char)G; *(x++) = (unsigned char)B; a++; b++; c++; } } memmove(destination,newDest,lgrTotale); free(newDest); } else { // need to make RGB Pixels from R,G,B Planes // (all the Frames at a time) int l = Header->GetXSize()*Header->GetYSize()*Header->GetZSize(); char * newDest = (char*) malloc(lgrTotale); char * x = newDest; char * a = (char *)destination; char * b = a + l; char * c = b + l; for (int j=0;jSetEntryByNumber(spp,0x0028,0x0002); std::string rgb="RGB "; // Photometric Interpretation Header->SetEntryByNumber(rgb,0x0028,0x0004); std::string planConfig = "0"; // Planar Configuration Header->SetEntryByNumber(planConfig,0x0028,0x0006); // TODO : Drop Palette Color out of the Header? return lgrTotale; } /** * \ingroup gdcmFile * \brief performs a shadow copy (not a deep copy) of the user given * pixel area. * 'image' Pixels are presented as C-like 2D arrays : line per line. * 'volume'Pixels are presented as C-like 3D arrays : lane per plane * \warning user is kindly requested NOT TO 'free' the Pixel area * @param inData user supplied pixel area * @param ExpectedSize total image size, in Bytes * * @return boolean */ bool gdcmFile::SetImageData(void * inData, size_t ExpectedSize) { Header->SetImageDataSize(ExpectedSize); PixelData = inData; lgrTotale = ExpectedSize; return(true); } /** * \ingroup gdcmFile * \brief Writes on disk A SINGLE Dicom file * NO test is performed on processor "Endiannity". * It's up to the user to call his Reader properly * @param fileName name of the file to be created * (any already existing file is over written) * @return false if write fails */ bool gdcmFile::WriteRawData (std::string fileName) { FILE * fp1; fp1 = fopen(fileName.c_str(),"wb"); if (fp1 == NULL) { printf("Fail to open (write) file [%s] \n",fileName.c_str()); return (false); } fwrite (PixelData,lgrTotale, 1, fp1); fclose (fp1); return(true); } /** * \ingroup gdcmFile * \brief Writes on disk A SINGLE Dicom file, * using the Implicit Value Representation convention * NO test is performed on processor "Endiannity". * @param fileName name of the file to be created * (any already existing file is overwritten) * @return false if write fails */ bool gdcmFile::WriteDcmImplVR (std::string fileName) { return WriteBase(fileName, ImplicitVR); } /** * \ingroup gdcmFile * \brief Writes on disk A SINGLE Dicom file, * using the Implicit Value Representation convention * NO test is performed on processor "Endiannity". * @param fileName name of the file to be created * (any already existing file is overwritten) * @return false if write fails */ bool gdcmFile::WriteDcmImplVR (const char* fileName) { return WriteDcmImplVR (std::string (fileName)); } /** * \ingroup gdcmFile * \brief Writes on disk A SINGLE Dicom file, * using the Explicit Value Representation convention * NO test is performed on processor "Endiannity". * @param fileName name of the file to be created * (any already existing file is overwritten) * @return false if write fails */ bool gdcmFile::WriteDcmExplVR (std::string fileName) { return WriteBase(fileName, ExplicitVR); } /** * \ingroup gdcmFile * \brief Writes on disk A SINGLE Dicom file, * using the ACR-NEMA convention * NO test is performed on processor "Endiannity". * (a l'attention des logiciels cliniques * qui ne prennent en entrée QUE des images ACR ... * \warning if a DICOM_V3 header is supplied, * groups < 0x0008 and shadow groups are ignored * \warning NO TEST is performed on processor "Endiannity". * @param fileName name of the file to be created * (any already existing file is overwritten) * @return false if write fails */ bool gdcmFile::WriteAcr (std::string fileName) { return WriteBase(fileName, ACR); } //----------------------------------------------------------------------------- // Protected /** * \ingroup gdcmFile * \brief NOT a end user inteded function * (used by WriteDcmExplVR, WriteDcmImplVR, WriteAcr, etc) * @param fileName name of the file to be created * (any already existing file is overwritten) * @param type file type (ExplicitVR, ImplicitVR, DICOMDIR, ...) * @return false if write fails */ bool gdcmFile::WriteBase (std::string fileName, FileType type) { FILE * fp1; if (PixelRead==-1 && type != DICOMDIR) { /* std::cout << "U never Read the pixels; U cannot write the file" << std::endl;*/ return false; } fp1 = fopen(fileName.c_str(),"wb"); if (fp1 == NULL) { printf("Failed to open (write) File [%s] \n",fileName.c_str()); return (false); } if ( (type == ImplicitVR) || (type == ExplicitVR) ) { char * filePreamble; // writing Dicom File Preamble filePreamble=(char*)calloc(128,1); fwrite(filePreamble,128,1,fp1); fwrite("DICM",4,1,fp1); free (filePreamble); } // -------------------------------------------------------------- // Special Patch to allow gdcm to re-write ACR-LibIDO formated images // // if recognition code tells us we dealt with a LibIDO image // we reproduce on disk the switch between lineNumber and columnNumber // just before writting ... // TODO : the best trick would be *change* the recognition code // but pb expected if user deals with, e.g. COMPLEX images std::string rows, columns; if ( Header->GetFileType() == ACR_LIBIDO){ rows = Header->GetEntryByNumber(0x0028, 0x0010); columns = Header->GetEntryByNumber(0x0028, 0x0011); Header->SetEntryByNumber(columns, 0x0028, 0x0010); Header->SetEntryByNumber(rows , 0x0028, 0x0011); } // ----------------- End of Special Patch ---------------- // TODO : get the grPixel, numPixel values (for some ACR-NEMA images only) guint16 grPixel =Header->GetGrPixel(); guint16 numPixel=Header->GetNumPixel();; // Update Pixel Data Length // the *last* of the (GrPixel, NumPixel), if many. TagKey key = gdcmDictEntry::TranslateToKey(grPixel, numPixel); TagHeaderEntryHT::iterator p2; gdcmHeaderEntry * PixelElement; IterHT it= Header->GetEntry().equal_range(key); // get a pair of iterators first-last synonym if (Header->GetEntry().count(key) == 1) // only the first is significant p2=it.first; // iterator on the first (unique) synonym else p2=it.second;// iterator on the last synonym PixelElement=p2->second; // H Table target column (2-nd col) // PixelElement->SetPrintLevel(2); // PixelElement->Print(); if (PixelRead==1) PixelElement->SetLength(lgrTotaleRaw); else if (PixelRead==0) PixelElement->SetLength(lgrTotale); //PixelElement->SetPrintLevel(2); //PixelElement->Print(); Header->Write(fp1, type); // -------------------------------------------------------------- // Special Patch to allow gdcm to re-write ACR-LibIDO formated images // // ...and we restore the Header to be Dicom Compliant again // just after writting if (Header->GetFileType() == ACR_LIBIDO){ Header->SetEntryByNumber(rows , 0x0028, 0x0010); Header->SetEntryByNumber(columns, 0x0028, 0x0011); } // ----------------- End of Special Patch ---------------- fwrite(PixelData, lgrTotale, 1, fp1); fclose (fp1); return(true); } //----------------------------------------------------------------------------- // Private /** * \ingroup gdcmFile * \brief Swap the bytes, according to swap code. * \warning not end user intended * @param im area to deal with * @param swap swap code * @param lgr Area Length * @param nb Pixels Bit number */ void gdcmFile::SwapZone(void* im, int swap, int lgr, int nb) { guint32 s32; guint16 fort,faible; int i; if(nb == 16) switch(swap) { case 0: case 12: case 1234: break; case 21: case 3412: case 2143: case 4321: for(i=0;i>8) | ((((unsigned short int*)im)[i])<<8); } break; default: printf("SWAP value (16 bits) not allowed : %d\n", swap); } if( nb == 32 ) switch (swap) { case 0: case 1234: break; case 4321: for(i=0;i>16; fort= (fort>>8) | (fort<<8); faible=(faible>>8) | (faible<<8); s32=faible; ((unsigned long int*)im)[i]=(s32<<16)|fort; } break; case 2143: for(i=0;i>16; fort= (fort>>8) | (fort<<8); faible=(faible>>8) | (faible<<8); s32=fort; ((unsigned long int*)im)[i]=(s32<<16)|faible; } break; case 3412: for(i=0;i>16; s32=faible; ((unsigned long int*)im)[i]=(s32<<16)|fort; } break; default: printf("SWAP value (32 bits) not allowed : %d\n", swap); } return; } /** * \ingroup gdcmFile * \brief Read pixel data from disk (optionaly decompressing) into the * caller specified memory location. * @param destination where the pixel data should be stored. * */ bool gdcmFile::ReadPixelData(void* destination) { FILE *fp; if ( !(fp=Header->OpenFile())) return false; if ( fseek(fp, Header->GetPixelOffset(), SEEK_SET) == -1 ) { Header->CloseFile(); return false; } // ---------------------- Compacted File (12 Bits Per Pixel) /* unpack 12 Bits pixels into 16 Bits pixels */ /* 2 pixels 12bit = [0xABCDEF] */ /* 2 pixels 16bit = [0x0ABD] + [0x0FCE] */ if (Header->GetBitsAllocated()==12) { int nbPixels = Header->GetXSize() * Header->GetYSize(); unsigned char b0, b1, b2; unsigned short int* pdestination = (unsigned short int*)destination; for(int p=0;p> 4) << 8) + ((b0 & 0x0f) << 4) + (b1 & 0x0f); /* A */ /* B */ /* D */ *pdestination++ = ((b2 & 0x0f) << 8) + ((b1 >> 4) << 4) + (b2 >> 4); /* F */ /* C */ /* E */ // Troubles expected on Big-Endian processors ? } Header->CloseFile(); return(true); } // ---------------------- Uncompressed File if ( !Header->IsDicomV3() || Header->IsImplicitVRLittleEndianTransferSyntax() || Header->IsExplicitVRLittleEndianTransferSyntax() || Header->IsExplicitVRBigEndianTransferSyntax() || Header->IsDeflatedExplicitVRLittleEndianTransferSyntax() ) { size_t ItemRead = fread(destination, Header->GetPixelAreaLength(), 1, fp); if ( ItemRead != 1 ) { Header->CloseFile(); return false; } else { Header->CloseFile(); return true; } } // ---------------------- Run Length Encoding if (Header->IsRLELossLessTransferSyntax()) { bool res = (bool)gdcm_read_RLE_file (fp,destination); Header->CloseFile(); return res; } // --------------- SingleFrame/Multiframe JPEG Lossless/Lossy/2000 int nb; std::string str_nb=Header->GetEntryByNumber(0x0028,0x0100); if (str_nb == GDCM_UNFOUND ) { nb = 16; } else { nb = atoi(str_nb.c_str() ); if (nb == 12) nb =16; // ?? 12 should be ACR-NEMA only ? } int nBytes= nb/8; int taille = Header->GetXSize() * Header->GetYSize() * Header->GetSamplesPerPixel(); long fragmentBegining; // for ftell, fseek bool jpg2000 = Header->IsJPEG2000(); bool jpgLossless = Header->IsJPEGLossless(); bool res = true; guint16 ItemTagGr,ItemTagEl; int ln; // Position on begining of Jpeg Pixels fread(&ItemTagGr,2,1,fp); // Reading (fffe) : Item Tag Gr fread(&ItemTagEl,2,1,fp); // Reading (e000) : Item Tag El if(Header->GetSwapCode()) { ItemTagGr=Header->SwapShort(ItemTagGr); ItemTagEl=Header->SwapShort(ItemTagEl); } fread(&ln,4,1,fp); if(Header->GetSwapCode()) ln=Header->SwapLong(ln); // Basic Offset Table Item length if (ln != 0) { // What is it used for ?!? char *BasicOffsetTableItemValue = (char *)malloc(ln+1); fread(BasicOffsetTableItemValue,ln,1,fp); } // first Fragment initialisation fread(&ItemTagGr,2,1,fp); // Reading (fffe) : Item Tag Gr fread(&ItemTagEl,2,1,fp); // Reading (e000) : Item Tag El if(Header->GetSwapCode()) { ItemTagGr=Header->SwapShort(ItemTagGr); ItemTagEl=Header->SwapShort(ItemTagEl); } // parsing fragments until Sequence Delim. Tag found while ( ( ItemTagGr == 0xfffe) && (ItemTagEl != 0xe0dd) ) { // --- for each Fragment fread(&ln,4,1,fp); if(Header->GetSwapCode()) ln=Header->SwapLong(ln); // Fragment Item length fragmentBegining=ftell(fp); if (jpg2000) { // JPEG 2000 : call to ??? res = (bool)gdcm_read_JPEG2000_file (fp,destination); // Not Yet written } // ------------------------------------- endif (JPEG2000) else if (jpgLossless) { // JPEG LossLess : call to xmedcom JPEG JPEGLosslessDecodeImage (fp, // Reading Fragment pixels (unsigned short *)destination, Header->GetPixelSize()*8* Header->GetSamplesPerPixel(), ln); res=1; // in order not to break the loop } // ------------------------------------- endif (JPEGLossless) else { // JPEG Lossy : call to IJG 6b if (Header->GetBitsStored() == 8) { res = (bool)gdcm_read_JPEG_file (fp,destination); // Reading Fragment pixels } else { res = (bool)gdcm_read_JPEG_file12 (fp,destination);// Reading Fragment pixels } } // ------------------------------------- endif (JPEGLossy) if (!res) break; destination = (char *)destination + taille * nBytes; // location in user's memory // for next fragment (if any) fseek(fp,fragmentBegining,SEEK_SET); // To be sure we start fseek(fp,ln,SEEK_CUR); // at the begining of next fragment ItemTagGr = ItemTagEl =0; fread(&ItemTagGr,2,1,fp); // Reading (fffe) : Item Tag Gr fread(&ItemTagEl,2,1,fp); // Reading (e000) : Item Tag El if(Header->GetSwapCode()) { ItemTagGr=Header->SwapShort(ItemTagGr); ItemTagEl=Header->SwapShort(ItemTagEl); } } // endWhile parsing fragments until Sequence Delim. Tag found Header->CloseFile(); return res; } //-----------------------------------------------------------------------------