/*========================================================================= Program: gdcm Module: $RCSfile: gdcmFile.cxx,v $ Language: C++ Date: $Date: 2004/11/25 16:35:17 $ Version: $Revision: 1.165 $ Copyright (c) CREATIS (Centre de Recherche et d'Applications en Traitement de l'Image). All rights reserved. See Doc/License.txt or http://www.creatis.insa-lyon.fr/Public/Gdcm/License.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #include "gdcmFile.h" #include "gdcmDocument.h" #include "gdcmDebug.h" #include "gdcmUtil.h" #include "gdcmBinEntry.h" #include namespace gdcm { typedef std::pair IterHT; //------------------------------------------------------------------------- // Constructor / Destructor /** * \brief Constructor dedicated to deal with the *pixels* area of a ACR/DICOMV3 * file (Header only deals with the ... header) * Opens (in read only and when possible) an existing file and checks * for DICOM compliance. Returns NULL on failure. * It will be up to the user to load the pixels into memory * (see GetImageData, GetImageDataRaw) * \note the in-memory representation of all available tags found in * the DICOM header is post-poned to first header information access. * This avoid a double parsing of public part of the header when * user sets an a posteriori shadow dictionary (efficiency can be * seen as a side effect). * @param header already built Header */ File::File(Header *header) { HeaderInternal = header; SelfHeader = false; Initialise(); } /** * \brief Constructor dedicated to deal with the *pixels* area of a ACR/DICOMV3 * file (Header only deals with the ... header) * Opens (in read only and when possible) an existing file and checks * for DICOM compliance. Returns NULL on failure. * It will be up to the user to load the pixels into memory * (see GetImageData, GetImageDataRaw) * \note the in-memory representation of all available tags found in * the DICOM header is post-poned to first header information access. * This avoid a double parsing of public part of the header when * one sets an a posteriori shadow dictionary (efficiency can be * seen as a side effect). * @param filename file to be opened for parsing */ File::File(std::string const & filename ) { HeaderInternal = new Header( filename ); SelfHeader = true; Initialise(); } /** * \brief Factorization for various forms of constructors. */ void File::Initialise() { WriteMode = WMODE_DECOMPRESSED; WriteType = WTYPE_IMPL_VR; PixelConverter = new PixelConvert; Archive = new DocEntryArchive( HeaderInternal ); if ( HeaderInternal->IsReadable() ) { PixelConverter->GrabInformationsFromHeader( HeaderInternal ); } Pixel_Data = 0; ImageDataSize = 0; } /** * \brief canonical destructor * \note If the Header was created by the File constructor, * it is destroyed by the File */ File::~File() { if( PixelConverter ) { delete PixelConverter; } if( Archive ) { delete Archive; } if( SelfHeader ) { delete HeaderInternal; } HeaderInternal = 0; } //----------------------------------------------------------------------------- // Print //----------------------------------------------------------------------------- // Public /** * \brief Get the size of the image data * * If the image can be RGB (with a lut or by default), the size * corresponds to the RGB image * @return The image size */ size_t File::GetImageDataSize() { return PixelConverter->GetRGBSize(); } /** * \brief Get the size of the image data * * If the image can be RGB by transformation in a LUT, this * transformation isn't considered * @return The raw image size */ size_t File::GetImageDataRawSize() { return PixelConverter->GetDecompressedSize(); } /** * \brief - Allocates necessary memory, * - Reads the pixels from disk (uncompress if necessary), * - Transforms YBR pixels, if any, into RGB pixels * - Transforms 3 planes R, G, B, if any, into a single RGB Plane * - Transforms single Grey plane + 3 Palettes into a RGB Plane * - Copies the pixel data (image[s]/volume[s]) to newly allocated zone. * @return Pointer to newly allocated pixel data. * NULL if alloc fails */ uint8_t* File::GetImageData() { if ( ! GetDecompressed() ) { // If the decompression failed nothing can be done. return 0; } if ( HeaderInternal->HasLUT() && PixelConverter->BuildRGBImage() ) { return PixelConverter->GetRGB(); } else { // When no LUT or LUT conversion fails, return the decompressed return PixelConverter->GetDecompressed(); } } /** * \brief * Read the pixels from disk (uncompress if necessary), * Transforms YBR pixels, if any, into RGB pixels * Transforms 3 planes R, G, B, if any, into a single RGB Plane * Transforms single Grey plane + 3 Palettes into a RGB Plane * Copies at most MaxSize bytes of pixel data to caller allocated * memory space. * \warning This function allows people that want to build a volume * from an image stack *not to* have, first to get the image pixels, * and then move them to the volume area. * It's absolutely useless for any VTK user since vtk chooses * to invert the lines of an image, that is the last line comes first * (for some axis related reasons?). Hence he will have * to load the image line by line, starting from the end. * VTK users have to call GetImageData * * @param destination Address (in caller's memory space) at which the * pixel data should be copied * @param maxSize Maximum number of bytes to be copied. When MaxSize * is not sufficient to hold the pixel data the copy is not * executed (i.e. no partial copy). * @return On success, the number of bytes actually copied. Zero on * failure e.g. MaxSize is lower than necessary. */ size_t File::GetImageDataIntoVector (void* destination, size_t maxSize) { if ( ! GetDecompressed() ) { // If the decompression failed nothing can be done. return 0; } if ( HeaderInternal->HasLUT() && PixelConverter->BuildRGBImage() ) { if ( PixelConverter->GetRGBSize() > maxSize ) { dbg.Verbose(0, "File::GetImageDataIntoVector: pixel data bigger" "than caller's expected MaxSize"); return 0; } memcpy( destination, (void*)PixelConverter->GetRGB(), PixelConverter->GetRGBSize() ); return PixelConverter->GetRGBSize(); } // Either no LUT conversion necessary or LUT conversion failed if ( PixelConverter->GetDecompressedSize() > maxSize ) { dbg.Verbose(0, "File::GetImageDataIntoVector: pixel data bigger" "than caller's expected MaxSize"); return 0; } memcpy( destination, (void*)PixelConverter->GetDecompressed(), PixelConverter->GetDecompressedSize() ); return PixelConverter->GetDecompressedSize(); } /** * \brief Allocates necessary memory, * Transforms YBR pixels (if any) into RGB pixels * Transforms 3 planes R, G, B (if any) into a single RGB Plane * Copies the pixel data (image[s]/volume[s]) to newly allocated zone. * DOES NOT transform Grey plane + 3 Palettes into a RGB Plane * @return Pointer to newly allocated pixel data. * \ NULL if alloc fails */ uint8_t* File::GetImageDataRaw () { return GetDecompressed(); } uint8_t* File::GetDecompressed() { uint8_t* decompressed = PixelConverter->GetDecompressed(); if ( ! decompressed ) { // The decompressed image migth not be loaded yet: std::ifstream* fp = HeaderInternal->OpenFile(); PixelConverter->ReadAndDecompressPixelData( fp ); if(fp) HeaderInternal->CloseFile(); decompressed = PixelConverter->GetDecompressed(); if ( ! decompressed ) { dbg.Verbose(0, "File::GetDecompressed: read/decompress of " "pixel data apparently went wrong."); return 0; } } return decompressed; } /** * \brief Points the internal Pixel_Data pointer to the callers inData * image representation, BUT WITHOUT COPYING THE DATA. * 'image' Pixels are presented as C-like 2D arrays : line per line. * 'volume'Pixels are presented as C-like 3D arrays : plane per plane * \warning Since the pixels are not copied, it is the caller's responsability * not to deallocate it's data before gdcm uses them (e.g. with * the Write() method. * @param inData user supplied pixel area * @param expectedSize total image size, in Bytes * * @return boolean */ bool File::SetImageData(uint8_t* inData, size_t expectedSize) { // FIXME : if already allocated, memory leak ! Pixel_Data = inData; ImageDataSize = expectedSize; // FIXME : 7fe0, 0010 IS NOT set ... return true; } /** * \brief Writes on disk A SINGLE Dicom file * NO test is performed on processor "Endiannity". * It's up to the user to call his Reader properly * @param fileName name of the file to be created * (any already existing file is over written) * @return false if write fails */ bool File::WriteRawData(std::string const & fileName) { std::ofstream fp1(fileName.c_str(), std::ios::out | std::ios::binary ); if (!fp1) { dbg.Verbose(2, "Fail to open (write) file:", fileName.c_str()); return false; } fp1.write((char*)Pixel_Data, ImageDataSize); fp1.close(); return true; } /** * \brief Writes on disk A SINGLE Dicom file, * using the Implicit Value Representation convention * NO test is performed on processor "Endiannity". * @param fileName name of the file to be created * (any already existing file is overwritten) * @return false if write fails */ bool File::WriteDcmImplVR (std::string const & fileName) { SetWriteTypeToDcmImplVR(); return Write(fileName); } /** * \brief Writes on disk A SINGLE Dicom file, * using the Explicit Value Representation convention * NO test is performed on processor "Endiannity". * @param fileName name of the file to be created * (any already existing file is overwritten) * @return false if write fails */ bool File::WriteDcmExplVR (std::string const & fileName) { SetWriteTypeToDcmExplVR(); return Write(fileName); } /** * \brief Writes on disk A SINGLE Dicom file, * using the ACR-NEMA convention * NO test is performed on processor "Endiannity". * (a l'attention des logiciels cliniques * qui ne prennent en entrée QUE des images ACR ... * \warning if a DICOM_V3 header is supplied, * groups < 0x0008 and shadow groups are ignored * \warning NO TEST is performed on processor "Endiannity". * @param fileName name of the file to be created * (any already existing file is overwritten) * @return false if write fails */ bool File::WriteAcr (std::string const & fileName) { SetWriteTypeToAcr(); return Write(fileName); } bool File::Write(std::string const& fileName) { switch(WriteType) { case WTYPE_IMPL_VR: return WriteBase(fileName,ImplicitVR); case WTYPE_EXPL_VR: return WriteBase(fileName,ExplicitVR); case WTYPE_ACR: return WriteBase(fileName,ACR); } return(false); } /** * \brief Access to the underlying \ref PixelConverter RGBA LUT */ uint8_t* File::GetLutRGBA() { return PixelConverter->GetLutRGBA(); } //----------------------------------------------------------------------------- // Protected /** * \brief NOT a end user inteded function * (used by WriteDcmExplVR, WriteDcmImplVR, WriteAcr, etc) * @param fileName name of the file to be created * (any already existing file is overwritten) * @param type file type (ExplicitVR, ImplicitVR, ...) * @return false if write fails */ bool File::WriteBase (std::string const & fileName, FileType type) { switch(type) { case ImplicitVR: SetWriteFileTypeToImplicitVR(); break; case ExplicitVR: SetWriteFileTypeToExplicitVR(); break; case ACR: SetWriteFileTypeToACR(); break; case ACR_LIBIDO: SetWriteFileTypeToACRLibido(); break; default: SetWriteFileTypeToExplicitVR(); } switch(WriteMode) { case WMODE_NATIVE : SetWriteToNative(); break; case WMODE_DECOMPRESSED : SetWriteToDecompressed(); break; case WMODE_RGB : SetWriteToRGB(); break; } // -------------------------------------------------------------- // Special Patch to allow gdcm to re-write ACR-LibIDO formated images // // if recognition code tells us we dealt with a LibIDO image // we reproduce on disk the switch between lineNumber and columnNumber // just before writting ... /// \todo the best trick would be *change* the recognition code /// but pb expected if user deals with, e.g. COMPLEX images /* if ( HeaderInternal->GetFileType() == ACR_LIBIDO) { SetWriteToLibido(); }*/ // ----------------- End of Special Patch ---------------- bool check = CheckWriteIntegrity(); if(check) { check = HeaderInternal->Write(fileName,type); } // -------------------------------------------------------------- // Special Patch to allow gdcm to re-write ACR-LibIDO formated images // // ...and we restore the Header to be Dicom Compliant again // just after writting /* if ( HeaderInternal->GetFileType() == ACR_LIBIDO ) { RestoreWriteFromLibido(); }*/ // ----------------- End of Special Patch ---------------- RestoreWrite(); RestoreWriteFileType(); return check; } /** * \brief Check the write integrity * * The tests made are : * - verify the size of the image to write with the possible write * when the user set an image data * @return true if the check successfulls */ bool File::CheckWriteIntegrity() { if(Pixel_Data) { int numberBitsAllocated = HeaderInternal->GetBitsAllocated(); if ( numberBitsAllocated == 0 || numberBitsAllocated == 12 ) { numberBitsAllocated = 16; } size_t decSize = HeaderInternal->GetXSize() * HeaderInternal->GetYSize() * HeaderInternal->GetZSize() * ( numberBitsAllocated / 8 ) * HeaderInternal->GetSamplesPerPixel(); size_t rgbSize = decSize; if( HeaderInternal->HasLUT() ) rgbSize = decSize * 3; switch(WriteMode) { case WMODE_NATIVE : break; case WMODE_DECOMPRESSED : if( decSize!=ImageDataSize ) { dbg.Verbose(0, "File::CheckWriteIntegrity: Data size is incorrect"); //std::cerr<<"Dec : "<GetGrPixel(),GetHeader()->GetNumPixel()); pixel->SetValue(GDCM_BINLOADED); pixel->SetBinArea(Pixel_Data,false); pixel->SetLength(ImageDataSize); Archive->Push(pixel); } } void File::SetWriteToDecompressed() { if(HeaderInternal->GetNumberOfScalarComponents()==3 && !HeaderInternal->HasLUT()) { SetWriteToRGB(); } else { ValEntry* photInt = CopyValEntry(0x0028,0x0004); if(HeaderInternal->HasLUT()) { photInt->SetValue("PALETTE COLOR "); photInt->SetLength(14); } else { photInt->SetValue("MONOCHROME1 "); photInt->SetLength(12); } BinEntry* pixel = CopyBinEntry(GetHeader()->GetGrPixel(),GetHeader()->GetNumPixel()); pixel->SetValue(GDCM_BINLOADED); if(Pixel_Data) { pixel->SetBinArea(Pixel_Data,false); pixel->SetLength(ImageDataSize); } else { pixel->SetBinArea(PixelConverter->GetDecompressed(),false); pixel->SetLength(PixelConverter->GetDecompressedSize()); } Archive->Push(photInt); Archive->Push(pixel); } } void File::SetWriteToRGB() { if(HeaderInternal->GetNumberOfScalarComponents()==3) { PixelConverter->BuildRGBImage(); ValEntry* spp = CopyValEntry(0x0028,0x0002); spp->SetValue("3 "); spp->SetLength(2); ValEntry* planConfig = CopyValEntry(0x0028,0x0006); planConfig->SetValue("0 "); planConfig->SetLength(2); ValEntry* photInt = CopyValEntry(0x0028,0x0004); photInt->SetValue("RGB "); photInt->SetLength(4); BinEntry* pixel = CopyBinEntry(GetHeader()->GetGrPixel(),GetHeader()->GetNumPixel()); pixel->SetValue(GDCM_BINLOADED); if(Pixel_Data) { pixel->SetBinArea(Pixel_Data,false); pixel->SetLength(ImageDataSize); } else if(PixelConverter->GetRGB()) { pixel->SetBinArea(PixelConverter->GetRGB(),false); pixel->SetLength(PixelConverter->GetRGBSize()); } else // Decompressed data { pixel->SetBinArea(PixelConverter->GetDecompressed(),false); pixel->SetLength(PixelConverter->GetDecompressedSize()); } Archive->Push(spp); Archive->Push(planConfig); Archive->Push(photInt); Archive->Push(pixel); // Remove any LUT Archive->Push(0x0028,0x1101); Archive->Push(0x0028,0x1102); Archive->Push(0x0028,0x1103); Archive->Push(0x0028,0x1201); Archive->Push(0x0028,0x1202); Archive->Push(0x0028,0x1203); // For old ACR-NEMA // Thus, we have a RGB image and the bits allocated = 24 and // samples per pixels = 1 (in the read file) if(HeaderInternal->GetBitsAllocated()==24) { ValEntry* bitsAlloc = CopyValEntry(0x0028,0x0100); bitsAlloc->SetValue("8 "); bitsAlloc->SetLength(2); ValEntry* bitsStored = CopyValEntry(0x0028,0x0101); bitsStored->SetValue("8 "); bitsStored->SetLength(2); ValEntry* highBit = CopyValEntry(0x0028,0x0102); highBit->SetValue("7 "); highBit->SetLength(2); Archive->Push(bitsAlloc); Archive->Push(bitsStored); Archive->Push(highBit); } } else { SetWriteToDecompressed(); } } void File::RestoreWrite() { Archive->Restore(0x0028,0x0002); Archive->Restore(0x0028,0x0004); Archive->Restore(0x0028,0x0006); Archive->Restore(GetHeader()->GetGrPixel(),GetHeader()->GetNumPixel()); // For old ACR-NEMA (24 bits problem) Archive->Restore(0x0028,0x0100); Archive->Restore(0x0028,0x0101); Archive->Restore(0x0028,0x0102); // For the LUT Archive->Restore(0x0028,0x1101); Archive->Restore(0x0028,0x1102); Archive->Restore(0x0028,0x1103); Archive->Restore(0x0028,0x1201); Archive->Restore(0x0028,0x1202); Archive->Restore(0x0028,0x1203); } void File::SetWriteFileTypeToACR() { Archive->Push(0x0002,0x0010); } void File::SetWriteFileTypeToACRLibido() { SetWriteFileTypeToACR(); } void File::SetWriteFileTypeToExplicitVR() { std::string ts = Util::DicomString( Document::GetTransferSyntaxValue(ExplicitVRLittleEndian).c_str() ); ValEntry* tss = CopyValEntry(0x0002,0x0010); tss->SetValue(ts); tss->SetLength(ts.length()); Archive->Push(tss); } void File::SetWriteFileTypeToImplicitVR() { std::string ts = Util::DicomString( Document::GetTransferSyntaxValue(ImplicitVRLittleEndian).c_str() ); ValEntry* tss = CopyValEntry(0x0002,0x0010); tss->SetValue(ts); tss->SetLength(ts.length()); } void File::RestoreWriteFileType() { Archive->Restore(0x0002,0x0010); } void File::SetWriteToLibido() { ValEntry *oldRow = dynamic_cast(HeaderInternal->GetDocEntryByNumber(0x0028, 0x0010)); ValEntry *oldCol = dynamic_cast(HeaderInternal->GetDocEntryByNumber(0x0028, 0x0011)); if( oldRow && oldCol ) { std::string rows, columns; ValEntry *newRow=new ValEntry(oldRow->GetDictEntry()); ValEntry *newCol=new ValEntry(oldCol->GetDictEntry()); newRow->Copy(oldCol); newCol->Copy(oldRow); newRow->SetValue(oldCol->GetValue()); newCol->SetValue(oldRow->GetValue()); Archive->Push(newRow); Archive->Push(newCol); } } void File::RestoreWriteFromLibido() { Archive->Restore(0x0028,0x0010); Archive->Restore(0x0028,0x0011); } ValEntry* File::CopyValEntry(uint16_t group,uint16_t element) { DocEntry* oldE = HeaderInternal->GetDocEntryByNumber(group, element); ValEntry* newE; if(oldE) { newE = new ValEntry(oldE->GetDictEntry()); newE->Copy(oldE); } else { newE = GetHeader()->NewValEntryByNumber(group,element); } return(newE); } BinEntry* File::CopyBinEntry(uint16_t group,uint16_t element) { DocEntry* oldE = HeaderInternal->GetDocEntryByNumber(group, element); BinEntry* newE; if(oldE) { newE = new BinEntry(oldE->GetDictEntry()); newE->Copy(oldE); } else { newE = GetHeader()->NewBinEntryByNumber(group,element); } return(newE); } //----------------------------------------------------------------------------- // Private /** * \brief Set the pixel datas in the good entry of the Header */ void File::SetPixelData(uint8_t* data) { GetHeader()->SetEntryByNumber( GDCM_BINLOADED, GetHeader()->GetGrPixel(), GetHeader()->GetNumPixel()); // Will be 7fe0, 0010 in standard case DocEntry* currentEntry = GetHeader()->GetDocEntryByNumber(GetHeader()->GetGrPixel(), GetHeader()->GetNumPixel()); if ( currentEntry ) { if ( BinEntry* binEntry = dynamic_cast(currentEntry) ) // Flag is to false because datas are kept in the gdcmPixelConvert binEntry->SetBinArea( data, false ); } } //----------------------------------------------------------------------------- } // end namespace gdcm