/* * jclhuff.c * * Copyright (C) 1991-1998, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains Huffman entropy encoding routines for lossless JPEG. * * Much of the complexity here has to do with supporting output suspension. * If the data destination module demands suspension, we want to be able to * back up to the start of the current MCU. To do this, we copy state * variables into local working storage, and update them back to the * permanent JPEG objects only upon successful completion of an MCU. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jlossls.h" /* Private declarations for lossless codec */ #include "jchuff.h" /* Declarations shared with jc*huff.c */ /* Expanded entropy encoder object for Huffman encoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */ typedef struct { INT32 put_buffer; /* current bit-accumulation buffer */ int put_bits; /* # of bits now in it */ } savable_state; /* This macro is to work around compilers with missing or broken * structure assignment. You'll need to fix this code if you have * such a compiler and you change MAX_COMPS_IN_SCAN. */ #ifndef NO_STRUCT_ASSIGN #define ASSIGN_STATE(dest,src) ((dest) = (src)) #else #define ASSIGN_STATE(dest,src) \ ((dest).put_buffer = (src).put_buffer, \ (dest).put_bits = (src).put_bits) #endif typedef struct { int ci, yoffset, MCU_width; } lhe_input_ptr_info; typedef struct { savable_state saved; /* Bit buffer at start of MCU */ /* These fields are NOT loaded into local working state. */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ int next_restart_num; /* next restart number to write (0-7) */ /* Pointers to derived tables (these workspaces have image lifespan) */ c_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; /* Pointers to derived tables to be used for each data unit within an MCU */ c_derived_tbl * cur_tbls[C_MAX_DATA_UNITS_IN_MCU]; #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */ long * count_ptrs[NUM_HUFF_TBLS]; /* Pointers to stats tables to be used for each data unit within an MCU */ long * cur_counts[C_MAX_DATA_UNITS_IN_MCU]; #endif /* Pointers to the proper input difference row for each group of data units * within an MCU. For each component, there are Vi groups of Hi data units. */ JDIFFROW input_ptr[C_MAX_DATA_UNITS_IN_MCU]; /* Number of input pointers in use for the current MCU. This is the sum * of all Vi in the MCU. */ int num_input_ptrs; /* Information used for positioning the input pointers within the input * difference rows. */ lhe_input_ptr_info input_ptr_info[C_MAX_DATA_UNITS_IN_MCU]; /* Index of the proper input pointer for each data unit within an MCU */ int input_ptr_index[C_MAX_DATA_UNITS_IN_MCU]; } lhuff_entropy_encoder; typedef lhuff_entropy_encoder * lhuff_entropy_ptr; /* Working state while writing an MCU. * This struct contains all the fields that are needed by subroutines. */ typedef struct { JOCTET * next_output_byte; /* => next byte to write in buffer */ size_t free_in_buffer; /* # of byte spaces remaining in buffer */ savable_state cur; /* Current bit buffer & DC state */ j_compress_ptr cinfo; /* dump_buffer needs access to this */ } working_state; /* Forward declarations */ METHODDEF(JDIMENSION) encode_mcus_huff (j_compress_ptr cinfo, JDIFFIMAGE diff_buf, JDIMENSION MCU_row_num, JDIMENSION MCU_col_num, JDIMENSION nMCU); METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo)); #ifdef ENTROPY_OPT_SUPPORTED METHODDEF(JDIMENSION) encode_mcus_gather (j_compress_ptr cinfo, JDIFFIMAGE diff_buf, JDIMENSION MCU_row_num, JDIMENSION MCU_col_num, JDIMENSION nMCU); METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo)); #endif /* * Initialize for a Huffman-compressed scan. * If gather_statistics is TRUE, we do not output anything during the scan, * just count the Huffman symbols used and generate Huffman code tables. */ METHODDEF(void) start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) { j_lossless_c_ptr losslsc = (j_lossless_c_ptr) cinfo->codec; lhuff_entropy_ptr entropy = (lhuff_entropy_ptr) losslsc->entropy_private; int ci, dctbl, sampn, ptrn, yoffset, xoffset; jpeg_component_info * compptr; if (gather_statistics) { #ifdef ENTROPY_OPT_SUPPORTED losslsc->entropy_encode_mcus = encode_mcus_gather; losslsc->pub.entropy_finish_pass = finish_pass_gather; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { losslsc->entropy_encode_mcus = encode_mcus_huff; losslsc->pub.entropy_finish_pass = finish_pass_huff; } for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; dctbl = compptr->dc_tbl_no; if (gather_statistics) { #ifdef ENTROPY_OPT_SUPPORTED /* Check for invalid table indexes */ /* (make_c_derived_tbl does this in the other path) */ if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); /* Allocate and zero the statistics tables */ /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ if (entropy->count_ptrs[dctbl] == NULL) entropy->count_ptrs[dctbl] = (long *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); MEMZERO(entropy->count_ptrs[dctbl], 257 * SIZEOF(long)); #endif } else { /* Compute derived values for Huffman tables */ /* We may do this more than once for a table, but it's not expensive */ jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, & entropy->derived_tbls[dctbl]); } } /* Precalculate encoding info for each sample in an MCU of this scan */ for (sampn = 0, ptrn = 0; sampn < cinfo->data_units_in_MCU;) { compptr = cinfo->cur_comp_info[cinfo->MCU_membership[sampn]]; ci = compptr->component_index; /* ci = cinfo->MCU_membership[sampn]; compptr = cinfo->cur_comp_info[ci];*/ for (yoffset = 0; yoffset < compptr->MCU_height; yoffset++, ptrn++) { /* Precalculate the setup info for each input pointer */ entropy->input_ptr_info[ptrn].ci = ci; entropy->input_ptr_info[ptrn].yoffset = yoffset; entropy->input_ptr_info[ptrn].MCU_width = compptr->MCU_width; for (xoffset = 0; xoffset < compptr->MCU_width; xoffset++, sampn++) { /* Precalculate the input pointer index for each sample */ entropy->input_ptr_index[sampn] = ptrn; /* Precalculate which tables to use for each sample */ entropy->cur_tbls[sampn] = entropy->derived_tbls[compptr->dc_tbl_no]; entropy->cur_counts[sampn] = entropy->count_ptrs[compptr->dc_tbl_no]; } } } entropy->num_input_ptrs = ptrn; /* Initialize bit buffer to empty */ entropy->saved.put_buffer = 0; entropy->saved.put_bits = 0; /* Initialize restart stuff */ entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num = 0; } /* Outputting bytes to the file */ /* Emit a byte, taking 'action' if must suspend. */ #define emit_byte(state,val,action) \ { *(state)->next_output_byte++ = (JOCTET) (val); \ if (--(state)->free_in_buffer == 0) \ if (! dump_buffer(state)) \ { action; } } LOCAL(boolean) dump_buffer (working_state * state) /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ { struct jpeg_destination_mgr * dest = state->cinfo->dest; if (! (*dest->empty_output_buffer) (state->cinfo)) return FALSE; /* After a successful buffer dump, must reset buffer pointers */ state->next_output_byte = dest->next_output_byte; state->free_in_buffer = dest->free_in_buffer; return TRUE; } /* Outputting bits to the file */ /* Only the right 24 bits of put_buffer are used; the valid bits are * left-justified in this part. At most 16 bits can be passed to emit_bits * in one call, and we never retain more than 7 bits in put_buffer * between calls, so 24 bits are sufficient. */ INLINE LOCAL(boolean) emit_bits (working_state * state, unsigned int code, int size) /* Emit some bits; return TRUE if successful, FALSE if must suspend */ { /* This routine is heavily used, so it's worth coding tightly. */ register INT32 put_buffer = (INT32) code; register int put_bits = state->cur.put_bits; /* if size is 0, caller used an invalid Huffman table entry */ if (size == 0) ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); put_buffer &= (((INT32) 1)<cur.put_buffer; /* and merge with old buffer contents */ while (put_bits >= 8) { int c = (int) ((put_buffer >> 16) & 0xFF); emit_byte(state, c, return FALSE); if (c == 0xFF) { /* need to stuff a zero byte? */ emit_byte(state, 0, return FALSE); } put_buffer <<= 8; put_bits -= 8; } state->cur.put_buffer = put_buffer; /* update state variables */ state->cur.put_bits = put_bits; return TRUE; } LOCAL(boolean) flush_bits (working_state * state) { if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */ return FALSE; state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ state->cur.put_bits = 0; return TRUE; } /* * Emit a restart marker & resynchronize predictions. */ LOCAL(boolean) emit_restart (working_state * state, int restart_num) { /* int ci; */ if (! flush_bits(state)) return FALSE; emit_byte(state, 0xFF, return FALSE); emit_byte(state, JPEG_RST0 + restart_num, return FALSE); /* The restart counter is not updated until we successfully write the MCU. */ return TRUE; } /* * Encode and output one nMCU's worth of Huffman-compressed differences. */ METHODDEF(JDIMENSION) encode_mcus_huff (j_compress_ptr cinfo, JDIFFIMAGE diff_buf, JDIMENSION MCU_row_num, JDIMENSION MCU_col_num, JDIMENSION nMCU) { j_lossless_c_ptr losslsc = (j_lossless_c_ptr) cinfo->codec; lhuff_entropy_ptr entropy = (lhuff_entropy_ptr) losslsc->entropy_private; working_state state; unsigned int mcu_num; int sampn, ci, yoffset, MCU_width, ptrn; /* jpeg_component_info * compptr; */ /* Load up working state */ state.next_output_byte = cinfo->dest->next_output_byte; state.free_in_buffer = cinfo->dest->free_in_buffer; ASSIGN_STATE(state.cur, entropy->saved); state.cinfo = cinfo; /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! emit_restart(&state, entropy->next_restart_num)) return 0; } /* Set input pointer locations based on MCU_col_num */ for (ptrn = 0; ptrn < entropy->num_input_ptrs; ptrn++) { ci = entropy->input_ptr_info[ptrn].ci; yoffset = entropy->input_ptr_info[ptrn].yoffset; MCU_width = entropy->input_ptr_info[ptrn].MCU_width; entropy->input_ptr[ptrn] = diff_buf[ci][MCU_row_num + yoffset] + (MCU_col_num * MCU_width); } for (mcu_num = 0; mcu_num < nMCU; mcu_num++) { /* Inner loop handles the samples in the MCU */ for (sampn = 0; sampn < cinfo->data_units_in_MCU; sampn++) { register int temp, temp2 /* , temp3 */ ; register int nbits; c_derived_tbl *dctbl = entropy->cur_tbls[sampn]; /* Encode the difference per section H.1.2.2 */ /* Input the sample difference */ temp = *entropy->input_ptr[entropy->input_ptr_index[sampn]]++; if (temp & 0x8000) { /* instead of temp < 0 */ temp = (-temp) & 0x7FFF; /* absolute value, mod 2^16 */ if (temp == 0) /* special case: magnitude = 32768 */ temp2 = temp = 0x8000; temp2 = ~ temp; /* one's complement of magnitude */ } else { temp &= 0x7FFF; /* abs value mod 2^16 */ temp2 = temp; /* magnitude */ } /* Find the number of bits needed for the magnitude of the difference */ nbits = 0; while (temp) { nbits++; temp >>= 1; } /* Check for out-of-range difference values. */ if (nbits > MAX_DIFF_BITS) ERREXIT(cinfo, JERR_BAD_DIFF); /* Emit the Huffman-coded symbol for the number of bits */ if (! emit_bits(&state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) return mcu_num; /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ if (nbits && /* emit_bits rejects calls with size 0 */ nbits != 16) /* special case: no bits should be emitted */ if (! emit_bits(&state, (unsigned int) temp2, nbits)) return mcu_num; } /* Completed MCU, so update state */ cinfo->dest->next_output_byte = state.next_output_byte; cinfo->dest->free_in_buffer = state.free_in_buffer; ASSIGN_STATE(entropy->saved, state.cur); /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } } return nMCU; } /* * Finish up at the end of a Huffman-compressed scan. */ METHODDEF(void) finish_pass_huff (j_compress_ptr cinfo) { j_lossless_c_ptr losslsc = (j_lossless_c_ptr) cinfo->codec; lhuff_entropy_ptr entropy = (lhuff_entropy_ptr) losslsc->entropy_private; working_state state; /* Load up working state ... flush_bits needs it */ state.next_output_byte = cinfo->dest->next_output_byte; state.free_in_buffer = cinfo->dest->free_in_buffer; ASSIGN_STATE(state.cur, entropy->saved); state.cinfo = cinfo; /* Flush out the last data */ if (! flush_bits(&state)) ERREXIT(cinfo, JERR_CANT_SUSPEND); /* Update state */ cinfo->dest->next_output_byte = state.next_output_byte; cinfo->dest->free_in_buffer = state.free_in_buffer; ASSIGN_STATE(entropy->saved, state.cur); } /* * Huffman coding optimization. * * We first scan the supplied data and count the number of uses of each symbol * that is to be Huffman-coded. (This process MUST agree with the code above.) * Then we build a Huffman coding tree for the observed counts. * Symbols which are not needed at all for the particular image are not * assigned any code, which saves space in the DHT marker as well as in * the compressed data. */ #ifdef ENTROPY_OPT_SUPPORTED /* * Trial-encode one nMCU's worth of Huffman-compressed differences. * No data is actually output, so no suspension return is possible. */ METHODDEF(JDIMENSION) encode_mcus_gather (j_compress_ptr cinfo, JDIFFIMAGE diff_buf, JDIMENSION MCU_row_num, JDIMENSION MCU_col_num, JDIMENSION nMCU) { j_lossless_c_ptr losslsc = (j_lossless_c_ptr) cinfo->codec; lhuff_entropy_ptr entropy = (lhuff_entropy_ptr) losslsc->entropy_private; unsigned int mcu_num; int sampn, ci, yoffset, MCU_width, ptrn; /* jpeg_component_info * compptr; */ /* Take care of restart intervals if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { /* Update restart state */ entropy->restarts_to_go = cinfo->restart_interval; } entropy->restarts_to_go--; } /* Set input pointer locations based on MCU_col_num */ for (ptrn = 0; ptrn < entropy->num_input_ptrs; ptrn++) { ci = entropy->input_ptr_info[ptrn].ci; yoffset = entropy->input_ptr_info[ptrn].yoffset; MCU_width = entropy->input_ptr_info[ptrn].MCU_width; entropy->input_ptr[ptrn] = diff_buf[ci][MCU_row_num + yoffset] + (MCU_col_num * MCU_width); } for (mcu_num = 0; mcu_num < nMCU; mcu_num++) { /* Inner loop handles the samples in the MCU */ for (sampn = 0; sampn < cinfo->data_units_in_MCU; sampn++) { register int temp; register int nbits; /* c_derived_tbl *dctbl = entropy->cur_tbls[sampn]; */ long * counts = entropy->cur_counts[sampn]; /* Encode the difference per section H.1.2.2 */ /* Input the sample difference */ temp = *entropy->input_ptr[entropy->input_ptr_index[sampn]]++; if (temp & 0x8000) { /* instead of temp < 0 */ temp = (-temp) & 0x7FFF; /* absolute value, mod 2^16 */ if (temp == 0) /* special case: magnitude = 32768 */ temp = 0x8000; } else temp &= 0x7FFF; /* abs value mod 2^16 */ /* Find the number of bits needed for the magnitude of the difference */ nbits = 0; while (temp) { nbits++; temp >>= 1; } /* Check for out-of-range difference values. */ if (nbits > MAX_DIFF_BITS) ERREXIT(cinfo, JERR_BAD_DIFF); /* Count the Huffman symbol for the number of bits */ counts[nbits]++; } } return nMCU; } /* * Finish up a statistics-gathering pass and create the new Huffman tables. */ METHODDEF(void) finish_pass_gather (j_compress_ptr cinfo) { j_lossless_c_ptr losslsc = (j_lossless_c_ptr) cinfo->codec; lhuff_entropy_ptr entropy = (lhuff_entropy_ptr) losslsc->entropy_private; int ci, dctbl; jpeg_component_info * compptr; JHUFF_TBL **htblptr; boolean did_dc[NUM_HUFF_TBLS]; /* It's important not to apply jpeg_gen_optimal_table more than once * per table, because it clobbers the input frequency counts! */ MEMZERO(did_dc, SIZEOF(did_dc)); for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; dctbl = compptr->dc_tbl_no; if (! did_dc[dctbl]) { htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl]; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[dctbl]); did_dc[dctbl] = TRUE; } } } #endif /* ENTROPY_OPT_SUPPORTED */ METHODDEF(boolean) need_optimization_pass (j_compress_ptr cinfo) { (void)cinfo; return TRUE; } /* * Module initialization routine for Huffman entropy encoding. */ GLOBAL(void) jinit_lhuff_encoder (j_compress_ptr cinfo) { j_lossless_c_ptr losslsc = (j_lossless_c_ptr) cinfo->codec; lhuff_entropy_ptr entropy; int i; entropy = (lhuff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(lhuff_entropy_encoder)); losslsc->entropy_private = (struct jpeg_entropy_encoder *) entropy; losslsc->pub.entropy_start_pass = start_pass_huff; losslsc->pub.need_optimization_pass = need_optimization_pass; /* Mark tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->derived_tbls[i] = NULL; #ifdef ENTROPY_OPT_SUPPORTED entropy->count_ptrs[i] = NULL; #endif } }