/* ratectl.c, bitrate control routines (linear quantization only currently) */ /* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */ /* * Disclaimer of Warranty * * These software programs are available to the user without any license fee or * royalty on an "as is" basis. The MPEG Software Simulation Group disclaims * any and all warranties, whether express, implied, or statuary, including any * implied warranties or merchantability or of fitness for a particular * purpose. In no event shall the copyright-holder be liable for any * incidental, punitive, or consequential damages of any kind whatsoever * arising from the use of these programs. * * This disclaimer of warranty extends to the user of these programs and user's * customers, employees, agents, transferees, successors, and assigns. * * The MPEG Software Simulation Group does not represent or warrant that the * programs furnished hereunder are free of infringement of any third-party * patents. * * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware, * are subject to royalty fees to patent holders. Many of these patents are * general enough such that they are unavoidable regardless of implementation * design. * */ #include #include #include "config.h" #include "global.h" /* private prototypes */ static void calc_actj _ANSI_ARGS_((unsigned char *frame)); static double var_sblk _ANSI_ARGS_((unsigned char *p, int lx)); /* rate control variables */ int Xi, Xp, Xb, r, d0i, d0p, d0b; double avg_act; static int R, T, d; static double actsum; static int Np, Nb, S, Q; static int prev_mquant; void rc_init_seq() { /* reaction parameter (constant) */ if (r==0) r = (int)floor(2.0*bit_rate/frame_rate + 0.5); /* average activity */ if (avg_act==0.0) avg_act = 400.0; /* remaining # of bits in GOP */ R = 0; /* global complexity measure */ if (Xi==0) Xi = (int)floor(160.0*bit_rate/115.0 + 0.5); if (Xp==0) Xp = (int)floor( 60.0*bit_rate/115.0 + 0.5); if (Xb==0) Xb = (int)floor( 42.0*bit_rate/115.0 + 0.5); /* virtual buffer fullness */ if (d0i==0) d0i = (int)floor(10.0*r/31.0 + 0.5); if (d0p==0) d0p = (int)floor(10.0*r/31.0 + 0.5); if (d0b==0) d0b = (int)floor(1.4*10.0*r/31.0 + 0.5); /* if (d0i==0) d0i = (int)floor(10.0*r/(qscale_tab[0] ? 56.0 : 31.0) + 0.5); if (d0p==0) d0p = (int)floor(10.0*r/(qscale_tab[1] ? 56.0 : 31.0) + 0.5); if (d0b==0) d0b = (int)floor(1.4*10.0*r/(qscale_tab[2] ? 56.0 : 31.0) + 0.5); */ fprintf(statfile,"\nrate control: sequence initialization\n"); fprintf(statfile, " initial global complexity measures (I,P,B): Xi=%d, Xp=%d, Xb=%d\n", Xi, Xp, Xb); fprintf(statfile," reaction parameter: r=%d\n", r); fprintf(statfile, " initial virtual buffer fullness (I,P,B): d0i=%d, d0p=%d, d0b=%d\n", d0i, d0p, d0b); fprintf(statfile," initial average activity: avg_act=%.1f\n", avg_act); } void rc_init_GOP(np,nb) int np,nb; { R += (int) floor((1 + np + nb) * bit_rate / frame_rate + 0.5); Np = fieldpic ? 2*np+1 : np; Nb = fieldpic ? 2*nb : nb; fprintf(statfile,"\nrate control: new group of pictures (GOP)\n"); fprintf(statfile," target number of bits for GOP: R=%d\n",R); fprintf(statfile," number of P pictures in GOP: Np=%d\n",Np); fprintf(statfile," number of B pictures in GOP: Nb=%d\n",Nb); } /* Note: we need to substitute K for the 1.4 and 1.0 constants -- this can be modified to fit image content */ /* Step 1: compute target bits for current picture being coded */ void rc_init_pict(frame) unsigned char *frame; { double Tmin; switch (pict_type) { case I_TYPE: T = (int) floor(R/(1.0+Np*Xp/(Xi*1.0)+Nb*Xb/(Xi*1.4)) + 0.5); d = d0i; break; case P_TYPE: T = (int) floor(R/(Np+Nb*1.0*Xb/(1.4*Xp)) + 0.5); d = d0p; break; case B_TYPE: T = (int) floor(R/(Nb+Np*1.4*Xp/(1.0*Xb)) + 0.5); d = d0b; break; } Tmin = (int) floor(bit_rate/(8.0*frame_rate) + 0.5); if (T112) mquant = 112; /* map to legal quantization level */ mquant = non_linear_mquant_table[map_non_linear_mquant[mquant]]; } else { mquant = (int) floor(d*31.0/r + 0.5); mquant <<= 1; /* clip mquant to legal (linear) range */ if (mquant<2) mquant = 2; if (mquant>62) mquant = 62; prev_mquant = mquant; } /* fprintf(statfile,"rc_start_mb:\n"); fprintf(statfile,"mquant=%d\n",mquant); */ return mquant; } /* Step 2: measure virtual buffer - estimated buffer discrepancy */ int rc_calc_mquant(j) int j; { int mquant; double dj, Qj, actj, N_actj; /* measure virtual buffer discrepancy from uniform distribution model */ dj = d + (bitcount()-S) - j*(T/(mb_width*mb_height2)); /* scale against dynamic range of mquant and the bits/picture count */ Qj = dj*31.0/r; /*Qj = dj*(q_scale_type ? 56.0 : 31.0)/r; */ actj = mbinfo[j].act; actsum+= actj; /* compute normalized activity */ N_actj = (2.0*actj+avg_act)/(actj+2.0*avg_act); if (q_scale_type) { /* modulate mquant with combined buffer and local activity measures */ mquant = (int) floor(2.0*Qj*N_actj + 0.5); /* clip mquant to legal (linear) range */ if (mquant<1) mquant = 1; if (mquant>112) mquant = 112; /* map to legal quantization level */ mquant = non_linear_mquant_table[map_non_linear_mquant[mquant]]; } else { /* modulate mquant with combined buffer and local activity measures */ mquant = (int) floor(Qj*N_actj + 0.5); mquant <<= 1; /* clip mquant to legal (linear) range */ if (mquant<2) mquant = 2; if (mquant>62) mquant = 62; /* ignore small changes in mquant */ if (mquant>=8 && (mquant-prev_mquant)>=-4 && (mquant-prev_mquant)<=4) mquant = prev_mquant; prev_mquant = mquant; } Q+= mquant; /* for calculation of average mquant */ /* fprintf(statfile,"rc_calc_mquant(%d): ",j); fprintf(statfile,"bitcount=%d, dj=%f, Qj=%f, actj=%f, N_actj=%f, mquant=%d\n", bitcount(),dj,Qj,actj,N_actj,mquant); */ return mquant; } /* compute variance of 8x8 block */ static double var_sblk(p,lx) unsigned char *p; int lx; { int i, j; unsigned int v, s, s2; s = s2 = 0; for (j=0; j<8; j++) { for (i=0; i<8; i++) { v = *p++; s+= v; s2+= v*v; } p+= lx - 8; } return s2/64.0 - (s/64.0)*(s/64.0); } /* VBV calculations * * generates warnings if underflow or overflow occurs */ /* vbv_end_of_picture * * - has to be called directly after writing picture_data() * - needed for accurate VBV buffer overflow calculation * - assumes there is no byte stuffing prior to the next start code */ static int bitcnt_EOP; void vbv_end_of_picture() { bitcnt_EOP = bitcount(); bitcnt_EOP = (bitcnt_EOP + 7) & ~7; /* account for bit stuffing */ } /* calc_vbv_delay * * has to be called directly after writing the picture start code, the * reference point for vbv_delay */ void calc_vbv_delay() { double picture_delay; static double next_ip_delay; /* due to frame reordering delay */ static double decoding_time; /* number of 1/90000 s ticks until next picture is to be decoded */ if (pict_type == B_TYPE) { if (prog_seq) { if (!repeatfirst) picture_delay = 90000.0/frame_rate; /* 1 frame */ else { if (!topfirst) picture_delay = 90000.0*2.0/frame_rate; /* 2 frames */ else picture_delay = 90000.0*3.0/frame_rate; /* 3 frames */ } } else { /* interlaced */ if (fieldpic) picture_delay = 90000.0/(2.0*frame_rate); /* 1 field */ else { if (!repeatfirst) picture_delay = 90000.0*2.0/(2.0*frame_rate); /* 2 flds */ else picture_delay = 90000.0*3.0/(2.0*frame_rate); /* 3 flds */ } } } else { /* I or P picture */ if (fieldpic) { if(topfirst==(pict_struct==TOP_FIELD)) { /* first field */ picture_delay = 90000.0/(2.0*frame_rate); } else { /* second field */ /* take frame reordering delay into account */ picture_delay = next_ip_delay - 90000.0/(2.0*frame_rate); } } else { /* frame picture */ /* take frame reordering delay into account*/ picture_delay = next_ip_delay; } if (!fieldpic || topfirst!=(pict_struct==TOP_FIELD)) { /* frame picture or second field */ if (prog_seq) { if (!repeatfirst) next_ip_delay = 90000.0/frame_rate; else { if (!topfirst) next_ip_delay = 90000.0*2.0/frame_rate; else next_ip_delay = 90000.0*3.0/frame_rate; } } else { if (fieldpic) next_ip_delay = 90000.0/(2.0*frame_rate); else { if (!repeatfirst) next_ip_delay = 90000.0*2.0/(2.0*frame_rate); else next_ip_delay = 90000.0*3.0/(2.0*frame_rate); } } } } if (decoding_time==0.0) { /* first call of calc_vbv_delay */ /* we start with a 7/8 filled VBV buffer (12.5% back-off) */ picture_delay = ((vbv_buffer_size*16384*7)/8)*90000.0/bit_rate; if (fieldpic) next_ip_delay = (int)(90000.0/frame_rate+0.5); } /* VBV checks */ /* check for underflow (previous picture) */ if (!low_delay && (decoding_time < bitcnt_EOP*90000.0/bit_rate)) { /* picture not completely in buffer at intended decoding time */ if (!quiet) fprintf(stderr,"vbv_delay underflow! (decoding_time=%.1f, t_EOP=%.1f\n)", decoding_time, bitcnt_EOP*90000.0/bit_rate); } /* when to decode current frame */ decoding_time += picture_delay; /* warning: bitcount() may overflow (e.g. after 9 min. at 8 Mbit/s */ vbv_delay = (int)(decoding_time - bitcount()*90000.0/bit_rate); /* check for overflow (current picture) */ if ((decoding_time - bitcnt_EOP*90000.0/bit_rate) > (vbv_buffer_size*16384)*90000.0/bit_rate) { if (!quiet) fprintf(stderr,"vbv_delay overflow!\n"); } fprintf(statfile, "\nvbv_delay=%d (bitcount=%d, decoding_time=%.2f, bitcnt_EOP=%d)\n", vbv_delay,bitcount(),decoding_time,bitcnt_EOP); if (vbv_delay<0) { if (!quiet) fprintf(stderr,"vbv_delay underflow: %d\n",vbv_delay); vbv_delay = 0; } if (vbv_delay>65535) { if (!quiet) fprintf(stderr,"vbv_delay overflow: %d\n",vbv_delay); vbv_delay = 65535; } }