// $Header: /cvs/public/gdcm/vtk/vtkGdcmReader.cxx,v 1.2 2003/05/12 14:32:43 frog Exp $ #include "vtkGdcmReader.h" #include "vtkByteSwap.h" #include #include "vtkObjectFactory.h" #include "vtkImageFlip.h" #include "gdcm.h" vtkGdcmReader::vtkGdcmReader() { // Constructor } //---------------------------------------------------------------------------- vtkGdcmReader::~vtkGdcmReader() { // FIXME free memory } // Configure the output e.g. WholeExtent, spacing, origin, scalar type... void vtkGdcmReader::ExecuteInformation() { //FIXME free any old memory // if the user has not set the extent, but has set the VOI // set the zaxis extent to the VOI z axis if (this->DataExtent[4]==0 && this->DataExtent[5] == 0 && (this->DataVOI[4] || this->DataVOI[5])) { this->DataExtent[4] = this->DataVOI[4]; this->DataExtent[5] = this->DataVOI[5]; } this->ComputeInternalFileName(this->DataExtent[4]); // Check for file existence. FILE *fp; fp = fopen(this->InternalFileName,"rb"); if (!fp) { vtkErrorMacro("Unable to open file " << this->InternalFileName); return; } fclose(fp); // Check for Gdcm parsability gdcmHeader GdcmHeader(this->InternalFileName); if (!GdcmHeader.IsReadable()) { vtkErrorMacro("Gdcm cannot parse file " << this->InternalFileName); return; } int NX = GdcmHeader.GetXSize(); int NY = GdcmHeader.GetYSize(); int NZ = GdcmHeader.GetZSize(); vtkDebugMacro("Image dimension as read from Gdcm:" << NX << " " << NY << " " << NZ); if(NZ>1) this->SetFileDimensionality(3); // When the user has set the VOI, check it's coherence with the file content. if (this->DataVOI[0] || this->DataVOI[1] || this->DataVOI[2] || this->DataVOI[3] || this->DataVOI[4] || this->DataVOI[5]) { if ((this->DataVOI[0] < 0) || (this->DataVOI[1] >= NX) || (this->DataVOI[2] < 0) || (this->DataVOI[3] >= NY) || (this->DataVOI[4] < 0) || (this->DataVOI[5] >= NZ)) { vtkWarningMacro("The requested VOI is larger than the file's (" << this->InternalFileName << ") extent "); this->DataVOI[0] = 0; this->DataVOI[1] = NX - 1; this->DataVOI[2] = 0; this->DataVOI[3] = NY - 1; this->DataVOI[4] = 0; this->DataVOI[5] = NZ - 1; } } // Positionate the Extent. this->DataExtent[0] = 0; this->DataExtent[1] = NX - 1; this->DataExtent[2] = 0; this->DataExtent[3] = NY - 1; if(this->GetFileDimensionality()==3) { this->DataExtent[4] = 0; this->DataExtent[5] = NZ - 1; } // We don't need to positionate the Endian related stuff (by using // this->SetDataByteOrderToBigEndian() or SetDataByteOrderToLittleEndian() // since the // reading of the file is done by gdcm // But we need to set up the data type for downstream filters: string type = GdcmHeader.GetPixelType(); if ( type == "8U" ) { vtkDebugMacro("8 bits unsigned image"); this->SetDataScalarTypeToUnsignedChar(); } else if ( type == "8S" ) { vtkErrorMacro("Cannot handle 8 bit signed files"); return; } else if ( type == "16U" ) { vtkDebugMacro("16 bits unsigned image"); this->SetDataScalarTypeToUnsignedShort(); } else if ( type == "16S" ) { vtkDebugMacro("16 bits signed image"); this->SetDataScalarTypeToShort(); //vtkErrorMacro("Cannot handle 16 bit signed files"); } else if ( type == "32U" ) { vtkDebugMacro("32 bits unsigned image"); vtkDebugMacro("WARNING: forced to signed int !"); this->SetDataScalarTypeToInt(); } else if ( type == "32S" ) { vtkDebugMacro("32 bits signed image"); this->SetDataScalarTypeToInt(); } else { vtkErrorMacro("Bad File Type " << this->InternalFileName << "Type " << type); return; } vtkImageReader::ExecuteInformation(); } // Update -> UpdateData -> Execute -> ExecuteData (see vtkSource.cxx for // last step. // This function (redefinition of vtkImageReader::ExecuteData, see // VTK/IO/vtkImageReader.cxx) reads a data from a file. The datas // extent/axes are assumed to be the // same as the file extent/order. void vtkGdcmReader::ExecuteData(vtkDataObject *output) { if (!this->FileName) { vtkErrorMacro("A valid FileName must be specified."); return; } vtkImageData *data = this->AllocateOutputData(output); data->SetExtent(this->DataExtent); data->GetPointData()->GetScalars()->SetName("ImageFile"); // First check the coherence between the DataExtent and the // size of the pixel data as annouced by gdcm (looks a bit paranoid). gdcmFile GdcmFile(this->InternalFileName); int NumColumns = this->DataExtent[1] - this->DataExtent[0] + 1; int NumLines = this->DataExtent[3] - this->DataExtent[2] + 1; int NumPlanes = this->DataExtent[5] - this->DataExtent[4] + 1; int size = NumColumns * NumLines * NumPlanes * GdcmFile.GetPixelSize(); if ( size != GdcmFile.GetImageDataSize() ) { vtkDebugMacro("Inconsistency with GetImageDataSize"); vtkDebugMacro("Number of scalar components" << this->NumberOfScalarComponents); } // Allocate pixel data space itself. unsigned char *mem = new unsigned char [size]; // If the data structure of vtk for image/volume representation // were straigthforwards the following would suffice: // GdcmFile.GetImageDataIntoVector((void*)mem, size); // But vtk chose to invert the lines of an image, that is the last // line comes first (for some axis related reasons?). Hence we need // to load the image line by line, starting from the end: int LineSize = NumColumns * GdcmFile.GetPixelSize(); unsigned char * Source = (unsigned char*)GdcmFile.GetImageData(); unsigned char * Destination = mem + size - LineSize; for (int i = 0; i < NumLines; i++) { memcpy((void*)Destination, (void*)Source, LineSize); Source += LineSize; Destination -= LineSize; } data->GetPointData()->GetScalars()->SetVoidArray(mem, size, 0); this->Modified(); } void vtkGdcmReader::PrintSelf(ostream& os, vtkIndent indent) { vtkImageReader::PrintSelf(os,indent); //CLEANME os << indent << "TypeSize: " << this->TypeSize << "\n"; }