// $Header: /cvs/public/gdcm/vtk/vtkGdcmReader.cxx,v 1.9 2003/06/03 10:26:07 frog Exp $ //CLEANME#include #include #include #include #include #include "vtkGdcmReader.h" #include "gdcm.h" vtkGdcmReader::vtkGdcmReader() { // Constructor } //---------------------------------------------------------------------------- vtkGdcmReader::~vtkGdcmReader() { // FIXME free memory } //---------------------------------------------------------------------------- // Adds a file name to the list of images to read. void vtkGdcmReader::AddFileName(const char* name) { // We need to bypass the const pointer [since list<>.push_bash() only // takes a char* (but not a const char*)] by making a local copy: char * LocalName = new char[strlen(name) + 1]; strcpy(LocalName, name); this->FileNameList.push_back(LocalName); // Starting from two files we have a stack of images: if(this->FileNameList.size() >= 2) this->SetFileDimensionality(3); this->Modified(); } //---------------------------------------------------------------------------- // Sets up a filename to be read. void vtkGdcmReader::SetFileName(const char *name) { vtkImageReader2::SetFileName(name); // Since we maintain a list of filenames (when building a volume) // we additionaly need to maintain this list. First we clean-up the // list and then positionate the incoming filename: this->FileNameList.empty(); this->AddFileName(name); } //---------------------------------------------------------------------------- // vtkGdcmReader can have the file names specified through two ways: // (1) by calling the vtkImageReader2::SetFileName(), SetFilePrefix() and // SetFilePattern() // (2) By successive calls to vtkGdcmReader::SetFileName() // When the first method was used by caller we need to update the local // filename list void vtkGdcmReader::BuilFileListFromPattern() { if (! this->FileNameList.empty()) return; if (!this->FileName && !this->FilePattern) { vtkErrorMacro("FileNames are not set. Either use AddFileName() or"); vtkErrorMacro("specify a FileName or FilePattern."); return; } for (int idx = this->DataExtent[4]; idx <= this->DataExtent[5]; ++idx) { this->ComputeInternalFileName(idx); vtkDebugMacro("Adding file " << this->InternalFileName); this->AddFileName(this->InternalFileName); } } //---------------------------------------------------------------------------- // When more than one filename is specified (i.e. we expect loading // a stack or volume) we need to check the corresponding images are // coherent: // - they all share the same X dimensions // - they all share the same Y dimensions // - each file a Z dimension of 1 // - they all share the same type ( 8 bit signed, or unsigned...) bool vtkGdcmReader::CheckFileCoherence() { this->BuilFileListFromPattern(); if (this->FileNameList.empty()) { vtkErrorMacro("FileNames are not set."); return false; } if (this->FileNameList.size() == 1) { vtkDebugMacro("Single file specified."); return true; } // Loop on the filenames: // - check for their existence and gdcm "parasability" // - get the coherence check done: bool FoundReferenceFile = false; int ReferenceNX; int ReferenceNY; int ReferenceNZ; std::string ReferenceType; for (std::list::iterator FileName = FileNameList.begin(); FileName != FileNameList.end(); ++FileName) { // Check for file existence. FILE *fp; fp = fopen(FileName->c_str(),"rb"); if (!fp) { vtkErrorMacro("Unable to open file " << *FileName->c_str()); vtkErrorMacro("Removing this file from readed files " << *FileName->c_str()); FileNameList.remove(*FileName); continue; } fclose(fp); // Check for Gdcm parsability gdcmHeader GdcmHeader(FileName->c_str()); if (!GdcmHeader.IsReadable()) { vtkErrorMacro("Gdcm cannot parse file " << *FileName->c_str()); vtkErrorMacro("Removing this file from readed files " << *FileName->c_str()); FileNameList.remove(*FileName); continue; } // We don't know how to handle multiple images in one file yet: int NZ = GdcmHeader.GetZSize(); if (NZ > 1) { vtkErrorMacro("This file contains multiple planes (images)" << *FileName->c_str()); vtkErrorMacro("Removing this file from readed files " << *FileName->c_str()); FileNameList.remove(*FileName); continue; } // Coherence stage: int NX = GdcmHeader.GetXSize(); int NY = GdcmHeader.GetYSize(); std::string type = GdcmHeader.GetPixelType(); if (FoundReferenceFile) { if ( ( NX != ReferenceNX ) || ( NY != ReferenceNY ) || ( NZ != ReferenceNZ ) || ( type != ReferenceType ) ) { vtkErrorMacro("This file is not coherent with previous ones" << *FileName->c_str()); vtkErrorMacro("Removing this file from readed files " << *FileName->c_str()); FileNameList.remove(*FileName); continue; } else { vtkDebugMacro("File is coherent with previous ones" << *FileName->c_str()); } } else { // This file shall be the reference: FoundReferenceFile = true; ReferenceNX = NX; ReferenceNY = NY; ReferenceNZ = NZ; ReferenceType = type; vtkDebugMacro("This file taken as coherence reference:" << *FileName->c_str()); } } // End of loop on FileName if (this->FileNameList.empty()) { vtkDebugMacro("No gdcm parsable file."); return false; } if (this->FileNameList.size() == 1) { vtkDebugMacro("Single parsable file left after coherence test."); return true; } return true; } //---------------------------------------------------------------------------- // Configure the output e.g. WholeExtent, spacing, origin, scalar type... void vtkGdcmReader::ExecuteInformation() { //FIXME free any old memory // if the user has not set the extent, but has set the VOI // set the zaxis extent to the VOI z axis if (this->DataExtent[4]==0 && this->DataExtent[5] == 0 && (this->DataVOI[4] || this->DataVOI[5])) { this->DataExtent[4] = this->DataVOI[4]; this->DataExtent[5] = this->DataVOI[5]; } if ( ! this->CheckFileCoherence() ) { vtkErrorMacro("File set is not coherent. Exiting..."); return; } std::string ReferenceFile = this->FileNameList.front(); gdcmHeader GdcmHeader(ReferenceFile.c_str()); int NX = GdcmHeader.GetXSize(); int NY = GdcmHeader.GetYSize(); int NZ = GdcmHeader.GetZSize(); vtkDebugMacro("Image dimension as read from Gdcm:" << NX << " " << NY << " " << NZ); // When the user has set the VOI, check it's coherence with the file content. if (this->DataVOI[0] || this->DataVOI[1] || this->DataVOI[2] || this->DataVOI[3] || this->DataVOI[4] || this->DataVOI[5]) { if ((this->DataVOI[0] < 0) || (this->DataVOI[1] >= NX) || (this->DataVOI[2] < 0) || (this->DataVOI[3] >= NY) || (this->DataVOI[4] < 0) || (this->DataVOI[5] >= this->FileNameList.size())) { vtkWarningMacro("The requested VOI is larger than the file's (" << ReferenceFile.c_str() << ") extent "); this->DataVOI[0] = 0; this->DataVOI[1] = NX - 1; this->DataVOI[2] = 0; this->DataVOI[3] = NY - 1; this->DataVOI[4] = 0; this->DataVOI[5] = this->FileNameList.size() - 1; } } // Positionate the Extent. this->DataExtent[0] = 0; this->DataExtent[1] = NX - 1; this->DataExtent[2] = 0; this->DataExtent[3] = NY - 1; if(this->FileNameList.size() > 1) { this->DataExtent[4] = 0; this->DataExtent[5] = this->FileNameList.size() - 1; } // We don't need to positionate the Endian related stuff (by using // this->SetDataByteOrderToBigEndian() or SetDataByteOrderToLittleEndian() // since the reading of the file is done by gdcm. // But we do need to set up the data type for downstream filters: std::string type = GdcmHeader.GetPixelType(); if ( type == "8U" ) { vtkDebugMacro("8 bits unsigned image"); this->SetDataScalarTypeToUnsignedChar(); } else if ( type == "8S" ) { vtkErrorMacro("Cannot handle 8 bit signed files"); return; } else if ( type == "16U" ) { vtkDebugMacro("16 bits unsigned image"); this->SetDataScalarTypeToUnsignedShort(); } else if ( type == "16S" ) { vtkDebugMacro("16 bits signed image"); this->SetDataScalarTypeToShort(); //vtkErrorMacro("Cannot handle 16 bit signed files"); } else if ( type == "32U" ) { vtkDebugMacro("32 bits unsigned image"); vtkDebugMacro("WARNING: forced to signed int !"); this->SetDataScalarTypeToInt(); } else if ( type == "32S" ) { vtkDebugMacro("32 bits signed image"); this->SetDataScalarTypeToInt(); } else { vtkErrorMacro("Bad File Type " << ReferenceFile.c_str() << "Type " << type.c_str()); return; } vtkImageReader::ExecuteInformation(); } //---------------------------------------------------------------------------- void vtkGdcmReader::LoadImageInMemory(std::string FileName, unsigned char * Dest, size_t size) { vtkDebugMacro("Copying to memmory image" << FileName.c_str()); gdcmFile GdcmFile(FileName.c_str()); if (GdcmFile.GetZSize() != 1 ) vtkErrorMacro("Cannot handle images with multiple planes"); // First check the expected size of the image is the one found by gdcm. if ( size != GdcmFile.GetImageDataSize() ) { vtkErrorMacro("Inconsistency with GetImageDataSize for file" << FileName.c_str()); vtkErrorMacro("Number of scalar components" << this->NumberOfScalarComponents); } // If the data structure of vtk for image/volume representation // were straigthforwards the following would suffice: // GdcmFile.GetImageDataIntoVector((void*)Dest, size); // But vtk chose to invert the lines of an image, that is the last // line comes first (for some axis related reasons?). Hence we need // to load the image line by line, starting from the end: int NumColumns = GdcmFile.GetXSize(); int NumLines = GdcmFile.GetYSize(); int LineSize = NumColumns * GdcmFile.GetPixelSize(); unsigned char * Source = (unsigned char*)GdcmFile.GetImageData(); unsigned char * Destination = Dest + size - LineSize; for (int i = 0; i < NumLines; i++) { memcpy((void*)Destination, (void*)Source, LineSize); Source += LineSize; Destination -= LineSize; } } //---------------------------------------------------------------------------- // Update -> UpdateData -> Execute -> ExecuteData (see vtkSource.cxx for // last step. // This function (redefinition of vtkImageReader::ExecuteData, see // VTK/IO/vtkImageReader.cxx) reads a data from a file. The datas // extent/axes are assumed to be the // same as the file extent/order. void vtkGdcmReader::ExecuteData(vtkDataObject *output) { if (this->FileNameList.empty()) { vtkErrorMacro("A least a valid FileName must be specified."); return; } vtkImageData *data = this->AllocateOutputData(output); data->SetExtent(this->DataExtent); data->GetPointData()->GetScalars()->SetName("DicomImage-Volume"); // First check the coherence between the DataExtent and the // size of the pixel data as annouced by gdcm (looks a bit paranoid) // for the reference file (i.e. the first one in the list): std::string ReferenceFile = this->FileNameList.front(); gdcmFile GdcmFile(ReferenceFile.c_str()); int NumColumns = this->DataExtent[1] - this->DataExtent[0] + 1; int NumLines = this->DataExtent[3] - this->DataExtent[2] + 1; int NumPlanes = 1; // This has been checked in CheckFileCoherence size_t size = NumColumns * NumLines * NumPlanes * GdcmFile.GetPixelSize(); if ( size != GdcmFile.GetImageDataSize() ) { vtkDebugMacro("Inconsistency with GetImageDataSize"); vtkDebugMacro("Number of scalar components" << this->NumberOfScalarComponents); } // The memory size for a full stack of images of course depends // on the number of images: size_t stack_size = size * this->FileNameList.size(); // Allocate pixel data space itself. unsigned char *mem = new unsigned char [stack_size]; unsigned char * Dest = mem; for (std::list::iterator FileName = FileNameList.begin(); FileName != FileNameList.end(); ++FileName) { this->LoadImageInMemory(*FileName, Dest, size); Dest += size; } // The "size" of the vtkScalars data is expressed in number of points, // and is not the memory size representing those points: stack_size = stack_size / GdcmFile.GetPixelSize(); data->GetPointData()->GetScalars()->SetVoidArray(mem, stack_size, 0); this->Modified(); } //---------------------------------------------------------------------------- void vtkGdcmReader::PrintSelf(ostream& os, vtkIndent indent) { vtkImageReader::PrintSelf(os,indent); os << indent << "Filenames : " << endl; vtkIndent nextIndent = indent.GetNextIndent(); for (std::list::iterator FileName = FileNameList.begin(); FileName != FileNameList.end(); ++FileName) { os << nextIndent << *FileName->c_str() << endl ; } }