]> Creatis software - clitk.git/blobdiff - tools/clitkAffineTransformGenericFilter.txx
With ITKv5, change VectorResample and VectorCast Image Filter to Resample and Cast...
[clitk.git] / tools / clitkAffineTransformGenericFilter.txx
index 958b2fa4ac87ae53a46e90cf5974e6e8a629b51d..c1fe88a40f4d06d6a94ba34983cc3f958cad1ade 100644 (file)
@@ -1,15 +1,30 @@
+/*=========================================================================
+  Program:   vv                     http://www.creatis.insa-lyon.fr/rio/vv
+
+  Authors belong to:
+  - University of LYON              http://www.universite-lyon.fr/
+  - Léon Bérard cancer center       http://www.centreleonberard.fr
+  - CREATIS CNRS laboratory         http://www.creatis.insa-lyon.fr
+
+  This software is distributed WITHOUT ANY WARRANTY; without even
+  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
+  PURPOSE.  See the copyright notices for more information.
+
+  It is distributed under dual licence
+
+  - BSD        See included LICENSE.txt file
+  - CeCILL-B   http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html
+  ===========================================================================**/
 #ifndef clitkAffineTransformGenericFilter_txx
 #define clitkAffineTransformGenericFilter_txx
 
-/* =================================================
- * @file   clitkAffineTransformGenericFilter.txx
- * @author 
- * @date   
- * 
- * @brief 
- * 
- ===================================================*/
-
+#include <sstream>
+#include <istream>
+#include <iterator>
+#include <itkCenteredEuler3DTransform.h>
+#include <itkRecursiveGaussianImageFilter.h>
+#include "clitkElastix.h"
+#include "clitkResampleImageWithOptionsFilter.h"
 
 namespace clitk
 {
@@ -23,7 +38,8 @@ namespace clitk
     m_Verbose=false;
     m_InputFileName="";
   }
-
+  //-------------------------------------------------------------------
 
   //-----------------------------------------------------------
   // Update
@@ -36,78 +52,171 @@ namespace clitk
     std::string PixelType;
     ReadImageDimensionAndPixelType(m_InputFileName, Dimension, PixelType, Components);
 
-    
     // Call UpdateWithDim
     if(Dimension==2) UpdateWithDim<2>(PixelType, Components);
-    else if(Dimension==3) UpdateWithDim<3>(PixelType, Components);
-    else if (Dimension==4)UpdateWithDim<4>(PixelType, Components); 
     else 
-      {
-       std::cout<<"Error, Only for 2, 3 or 4  Dimensions!!!"<<std::endl ;
-       return;
+      if(Dimension==3) UpdateWithDim<3>(PixelType, Components);
+      else if (Dimension==4)UpdateWithDim<4>(PixelType, Components);
+      else {
+        std::cout<<"Error, Only for 2, 3 or 4  Dimensions!!!"<<std::endl ;
+        return;
       }
   }
+  //-------------------------------------------------------------------
 
   //-------------------------------------------------------------------
   // Update with the number of dimensions
   //-------------------------------------------------------------------
   template<class args_info_type>
   template<unsigned int Dimension>
-  void 
+  void
   AffineTransformGenericFilter<args_info_type>::UpdateWithDim(std::string PixelType, int Components)
   {
     if (m_Verbose) std::cout << "Image was detected to be "<<Dimension<<"D and "<<Components<<" component(s) of "<<  PixelType<<"..."<<std::endl;
 
-    if (Components==1)
-      {
-       if(PixelType == "short"){  
-         if (m_Verbose) std::cout << "Launching filter in "<< Dimension <<"D and signed short..." << std::endl;
-         UpdateWithDimAndPixelType<Dimension, signed short>(); 
-       }
-       //    else if(PixelType == "unsigned_short"){  
-       //       if (m_Verbose) std::cout  << "Launching filter in "<< Dimension <<"D and unsigned_short..." << std::endl;
-       //       UpdateWithDimAndPixelType<Dimension, unsigned short>(); 
-       //     }
-       
-       else if (PixelType == "unsigned_char"){ 
-         if (m_Verbose) std::cout  << "Launching filter in "<< Dimension <<"D and unsigned_char..." << std::endl;
-         UpdateWithDimAndPixelType<Dimension, unsigned char>();
-       }
-       
-       //     else if (PixelType == "char"){ 
-       //       if (m_Verbose) std::cout  << "Launching filter in "<< Dimension <<"D and signed_char..." << std::endl;
-       //       UpdateWithDimAndPixelType<Dimension, signed char>();
-       //     }
-       else {
-         if (m_Verbose) std::cout  << "Launching filter in "<< Dimension <<"D and float..." << std::endl;
-         UpdateWithDimAndPixelType<Dimension, float>();
-       }
-      }
-
-    else if (Components==3)
-      {
-       if (m_Verbose) std::cout  << "Launching transform in "<< Dimension <<"D and 3D float (DVF)" << std::endl;
-       UpdateWithDimAndVectorType<Dimension, itk::Vector<float, Dimension> >();
+    if (Components==1) {
+      if(PixelType == "short") {
+        if (m_Verbose) std::cout << "Launching filter in "<< Dimension <<"D and signed short..." << std::endl;
+        UpdateWithDimAndPixelType<Dimension, signed short>();
       }
+      else if(PixelType == "unsigned_short"){
+        if (m_Verbose) std::cout  << "Launching filter in "<< Dimension <<"D and unsigned_short..." << std::endl;
+        UpdateWithDimAndPixelType<Dimension, unsigned short>();
+      }
+
+      else if (PixelType == "unsigned_char") {
+        if (m_Verbose) std::cout  << "Launching filter in "<< Dimension <<"D and unsigned_char..." << std::endl;
+        UpdateWithDimAndPixelType<Dimension, unsigned char>();
+      }
+
+      //     else if (PixelType == "char"){
+      //       if (m_Verbose) std::cout  << "Launching filter in "<< Dimension <<"D and signed_char..." << std::endl;
+      //       UpdateWithDimAndPixelType<Dimension, signed char>();
+      //     }
+      else if(PixelType == "double"){
+        if (m_Verbose) std::cout  << "Launching filter in "<< Dimension <<"D and double..." << std::endl;
+        UpdateWithDimAndPixelType<Dimension, double>();
+      }
+      else {
+        if (m_Verbose) std::cout  << "Launching filter in "<< Dimension <<"D and float..." << std::endl;
+        UpdateWithDimAndPixelType<Dimension, float>();
+      }
+    }
+
+    else if (Components==3) {
+      if (m_Verbose) std::cout  << "Launching transform in "<< Dimension <<"D and 3D float (DVF)" << std::endl;
+      UpdateWithDimAndVectorType<Dimension, itk::Vector<float, Dimension> >();
+    }
 
     else std::cerr<<"Number of components is "<<Components<<", not supported!"<<std::endl;
 
   }
+  //-------------------------------------------------------------------
+
+
+  //-------------------------------------------------------------------
+  // Compute updated bounding box
+  //-------------------------------------------------------------------
+  template<class args_info_type>
+  vnl_vector<double>
+  AffineTransformGenericFilter<args_info_type>::ComputeSize(vnl_vector<double> inputSize, vnl_matrix<double> transformationMatrix, bool returnMin)
+  {
+    //Compute input corners
+    int Dimension = inputSize.size();
+    vnl_matrix<double> vnlOutputSize(std::pow(2, Dimension), Dimension);
+    vnlOutputSize.fill(0);
+    if (Dimension == 2) {
+      for(unsigned int i=0; i< Dimension; i++)
+        vnlOutputSize[3][i] = inputSize[i];
+      vnlOutputSize[1][0] = inputSize[0];
+      vnlOutputSize[2][1] = inputSize[1];
+    } else if (Dimension == 3) {
+      for(unsigned int i=0; i< Dimension; i++)
+        vnlOutputSize[7][i] = inputSize[i];
+      vnlOutputSize[1][0] = inputSize[0];
+      vnlOutputSize[2][1] = inputSize[1];
+      vnlOutputSize[3][2] = inputSize[2];
+      vnlOutputSize[4][0] = inputSize[0];
+      vnlOutputSize[4][1] = inputSize[1];
+      vnlOutputSize[5][1] = inputSize[1];
+      vnlOutputSize[5][2] = inputSize[2];
+      vnlOutputSize[6][0] = inputSize[0];
+      vnlOutputSize[6][2] = inputSize[2];
+    } else { //Dimension ==4
+      for(unsigned int i=0; i< Dimension; i++)
+        vnlOutputSize[15][i] = inputSize[i];
+      vnlOutputSize[1][0] = inputSize[0];
+      vnlOutputSize[2][1] = inputSize[1];
+      vnlOutputSize[3][2] = inputSize[2];
+      vnlOutputSize[4][3] = inputSize[3];
+      vnlOutputSize[5][0] = inputSize[0];
+      vnlOutputSize[5][1] = inputSize[1];
+      vnlOutputSize[6][0] = inputSize[0];
+      vnlOutputSize[6][2] = inputSize[2];
+      vnlOutputSize[7][0] = inputSize[0];
+      vnlOutputSize[7][3] = inputSize[3];
+      vnlOutputSize[8][1] = inputSize[1];
+      vnlOutputSize[8][2] = inputSize[2];
+      vnlOutputSize[9][1] = inputSize[1];
+      vnlOutputSize[9][3] = inputSize[3];
+      vnlOutputSize[10][2] = inputSize[2];
+      vnlOutputSize[10][3] = inputSize[3];
+      vnlOutputSize[11][0] = inputSize[0];
+      vnlOutputSize[11][1] = inputSize[1];
+      vnlOutputSize[11][2] = inputSize[2];
+      vnlOutputSize[12][0] = inputSize[0];
+      vnlOutputSize[12][1] = inputSize[1];
+      vnlOutputSize[12][3] = inputSize[3];
+      vnlOutputSize[13][0] = inputSize[0];
+      vnlOutputSize[13][2] = inputSize[2];
+      vnlOutputSize[13][3] = inputSize[3];
+      vnlOutputSize[14][1] = inputSize[1];
+      vnlOutputSize[14][2] = inputSize[2];
+      vnlOutputSize[14][3] = inputSize[3];
+    }
+
+    //Compute the transformation of all corner
+    for (unsigned int i=0; i< std::pow(2, Dimension); ++i)
+      vnlOutputSize.set_row(i, transformationMatrix*vnlOutputSize.get_row(i));
+
+    //Compute the bounding box taking the max and the min
+    vnl_vector<double> minBB(vnlOutputSize.get_row(0)), maxBB(vnlOutputSize.get_row(0));
+    for (unsigned int i=0; i< std::pow(2, Dimension); ++i) {
+      for (unsigned int j=0; j< Dimension; ++j) {
+        if (vnlOutputSize[i][j] < minBB[j])
+          minBB[j] = vnlOutputSize[i][j];
+        if (vnlOutputSize[i][j] > maxBB[j])
+          maxBB[j] = vnlOutputSize[i][j];
+      }
+    }
 
+    //Compute the size
+    if (returnMin)
+      return minBB;
+    else {
+      vnl_vector<double> size;
+      size = maxBB - minBB;
+
+      return size;
+    }
+  }
+  //-------------------------------------------------------------------
 
   //-------------------------------------------------------------------
   // Update with the number of dimensions and the pixeltype
   //-------------------------------------------------------------------
   template<class args_info_type>
-  template <unsigned int Dimension, class  PixelType> 
-  void 
+  template <unsigned int Dimension, class  PixelType>
+  void
   AffineTransformGenericFilter<args_info_type>::UpdateWithDimAndPixelType()
   {
 
     // ImageTypes
     typedef itk::Image<PixelType, Dimension> InputImageType;
     typedef itk::Image<PixelType, Dimension> OutputImageType;
-    
+
     // Read the input
     typedef itk::ImageFileReader<InputImageType> InputReaderType;
     typename InputReaderType::Pointer reader = InputReaderType::New();
@@ -115,97 +224,429 @@ namespace clitk
     reader->Update();
     typename InputImageType::Pointer input= reader->GetOutput();
 
+    //Adaptative size, spacing origin (use previous clitkResampleImage)
+    if (m_ArgsInfo.adaptive_given) {
+      // Filter
+      typedef clitk::ResampleImageWithOptionsFilter<InputImageType, OutputImageType> ResampleImageFilterType;
+      typename ResampleImageFilterType::Pointer filter = ResampleImageFilterType::New();
+      filter->SetInput(input);
+
+      // Set Verbose
+      filter->SetVerboseOptions(m_ArgsInfo.verbose_flag);
+
+      // Set size / spacing
+      static const unsigned int dim = OutputImageType::ImageDimension;
+      typename OutputImageType::SpacingType spacing;
+      typename OutputImageType::SizeType size;
+      typename OutputImageType::PointType origin;
+      typename OutputImageType::DirectionType direction;
+
+      if (m_ArgsInfo.like_given) {
+        itk::ImageIOBase::Pointer header = clitk::readImageHeader(m_ArgsInfo.like_arg);
+        if (header) {
+          for(unsigned int i=0; i<dim; i++){
+            spacing[i] = header->GetSpacing(i);
+            size[i] = header->GetDimensions(i);
+            origin[i] = header->GetOrigin(i);
+          }
+          for(unsigned int i=0; i<dim; i++) {
+            for(unsigned int j=0;j<dim;j++) {
+                direction(i,j) = header->GetDirection(i)[j];
+            }
+          }
+          filter->SetOutputSpacing(spacing);
+          filter->SetOutputSize(size);
+          filter->SetOutputOrigin(origin);
+          filter->SetOutputDirection(direction);
+        }
+        else {
+          std::cerr << "*** Warning : I could not read '" << m_ArgsInfo.like_arg << "' ***" << std::endl;
+          exit(0);
+        }
+      }
+      else {
+        if (m_ArgsInfo.spacing_given == 1) {
+          filter->SetOutputIsoSpacing(m_ArgsInfo.spacing_arg[0]);
+        }
+        else if ((m_ArgsInfo.spacing_given != 0) && (m_ArgsInfo.size_given != 0)) {
+          std::cerr << "Error: use spacing or size, not both." << std::endl;
+          exit(0);
+        }
+        else if (m_ArgsInfo.spacing_given) {
+          if ((m_ArgsInfo.spacing_given != 0) && (m_ArgsInfo.spacing_given != dim)) {
+            std::cerr << "Error: spacing should have one or " << dim << " values." << std::endl;
+            exit(0);
+          }
+          for(unsigned int i=0; i<dim; i++)
+            spacing[i] = m_ArgsInfo.spacing_arg[i];
+          filter->SetOutputSpacing(spacing);
+        }
+        else if (m_ArgsInfo.size_given) {
+          if ((m_ArgsInfo.size_given != 0) && (m_ArgsInfo.size_given != dim)) {
+            std::cerr << "Error: size should have " << dim << " values." << std::endl;
+            exit(0);
+          }
+          for(unsigned int i=0; i<dim; i++)
+            size[i] = m_ArgsInfo.size_arg[i];
+          filter->SetOutputSize(size);
+        }
+        for(unsigned int i=0; i<dim; i++){
+          origin[i] = input->GetOrigin()[i];
+        }
+        for(unsigned int i=0; i<dim; i++) {
+          for(unsigned int j=0;j<dim;j++) {
+              direction(i,j) = input->GetDirection()[i][j];
+          }
+        }
+        filter->SetOutputOrigin(origin);
+        filter->SetOutputDirection(direction);
+      }
+
+      // Set temporal dimension
+      //filter->SetLastDimensionIsTime(m_ArgsInfo.time_flag);
+
+      // Set Gauss
+      filter->SetGaussianFilteringEnabled(m_ArgsInfo.autogauss_flag);
+      if (m_ArgsInfo.gauss_given != 0) {
+        typename ResampleImageFilterType::GaussianSigmaType g;
+        for(unsigned int i=0; i<dim; i++) {
+          g[i] = m_ArgsInfo.gauss_arg[i];
+        }
+        filter->SetGaussianSigma(g);
+      }
+
+      // Set Interpolation
+      int interp = m_ArgsInfo.interp_arg;
+      if (interp == 0) {
+        filter->SetInterpolationType(ResampleImageFilterType::NearestNeighbor);
+      } else {
+        if (interp == 1) {
+          filter->SetInterpolationType(ResampleImageFilterType::Linear);
+        } else {
+          if (interp == 2) {
+            filter->SetInterpolationType(ResampleImageFilterType::BSpline);
+          } else {
+            if (interp == 3) {
+              filter->SetInterpolationType(ResampleImageFilterType::B_LUT);
+            } else {
+                std::cerr << "Error. I do not know interpolation '" << m_ArgsInfo.interp_arg
+                          << "'. Choose among: nn, linear, bspline, blut, windowed sinc" << std::endl;
+                exit(0);
+            }
+          }
+        }
+      }
+
+      // Set default pixel value
+      filter->SetDefaultPixelValue(m_ArgsInfo.pad_arg);
+
+      // Set thread
+      //if (m_ArgsInfo.thread_given) {
+      //  filter->SetNumberOfThreads(m_ArgsInfo.thread_arg);
+      //}
+
+      // Go !
+      filter->Update();
+      typename OutputImageType::Pointer output = filter->GetOutput();
+      //this->template SetNextOutput<OutputImageType>(outputImage);
+
+      // Output
+      typedef itk::ImageFileWriter<OutputImageType> WriterType;
+      typename WriterType::Pointer writer = WriterType::New();
+      writer->SetFileName(m_ArgsInfo.output_arg);
+      writer->SetInput(output);
+      writer->Update();
+
+      return;
+    }
+
+    //Gaussian pre-filtering
+    typename itk::Vector<double, Dimension> gaussianSigma;
+    gaussianSigma.Fill(0);
+    bool gaussianFilteringEnabled(false);
+    bool autoGaussEnabled(false);
+    if (m_ArgsInfo.autogauss_given) { // Gaussian filter auto
+      autoGaussEnabled = m_ArgsInfo.autogauss_flag;
+    }
+    if (m_ArgsInfo.gauss_given) { // Gaussian filter set by user
+      gaussianFilteringEnabled = true;
+      if (m_ArgsInfo.gauss_given == 1)
+      {
+        for (unsigned int i=0; i<Dimension; i++)
+        {
+          gaussianSigma[i] = m_ArgsInfo.gauss_arg[0];
+        }
+      }
+      else if (m_ArgsInfo.gauss_given == Dimension)
+      {
+        for (unsigned int i=0; i<Dimension; i++)
+        {
+          gaussianSigma[i] = m_ArgsInfo.gauss_arg[i];
+        }
+      }
+      else
+      {
+        std::cerr << "Gaussian sigma dimension is incorrect" << std::endl;
+        return;
+      }
+    }
+
     //Filter
     typedef  itk::ResampleImageFilter< InputImageType,OutputImageType >  ResampleFilterType;
     typename ResampleFilterType::Pointer resampler = ResampleFilterType::New();
-    
+
     // Matrix
     typename itk::Matrix<double, Dimension+1, Dimension+1> matrix;
-    if (m_ArgsInfo.matrix_given)
+    if (m_ArgsInfo.rotate_given || m_ArgsInfo.translate_given)
       {
-       matrix= clitk::ReadMatrix<Dimension>(m_ArgsInfo.matrix_arg);
-       if (m_Verbose) std::cout<<"Reading the matrix..."<<std::endl;
+        if (m_ArgsInfo.matrix_given)
+          {
+            std::cerr << "You must use either rotate/translate or matrix options" << std::endl;
+            return;
+          }
+        itk::Array<double> transformParameters(2 * Dimension);
+        transformParameters.Fill(0.0);
+        if (m_ArgsInfo.rotate_given)
+          {
+            if (Dimension == 2)
+              transformParameters[0] = m_ArgsInfo.rotate_arg[0];
+            else
+              for (unsigned int i = 0; i < 3; i++)
+                transformParameters[i] = m_ArgsInfo.rotate_arg[i];
+          }
+        if (m_ArgsInfo.translate_given)
+          {
+            int pos = 3;
+            if (Dimension == 2)
+              pos = 1;
+            for (unsigned int i = 0; i < Dimension && i < 3; i++)
+              transformParameters[pos++] = m_ArgsInfo.translate_arg[i];
+          }
+        if (Dimension == 4)
+          {
+            matrix.SetIdentity();
+            itk::Matrix<double, 4, 4> tmp = GetForwardAffineMatrix3D(transformParameters);
+            for (unsigned int i = 0; i < 3; ++i)
+              for (unsigned int j = 0; j < 3; ++j)
+                matrix[i][j] = tmp[i][j];
+            for (unsigned int i = 0; i < 3; ++i)
+              matrix[i][4] = tmp[i][3];
+          }
+        else
+          matrix = GetForwardAffineMatrix<Dimension>(transformParameters);
       }
     else
-      { 
-       matrix.SetIdentity();
+      {
+        if (m_ArgsInfo.matrix_given)
+          {
+            matrix= clitk::ReadMatrix<Dimension>(m_ArgsInfo.matrix_arg);
+            if (m_Verbose) std::cout << "Reading the matrix..." << std::endl;
+          }
+        else {
+          if (m_ArgsInfo.elastix_given) {
+            std::string filename(m_ArgsInfo.elastix_arg);
+            matrix = createMatrixFromElastixFile<Dimension>(filename, m_Verbose);
+          }
+          else 
+            matrix.SetIdentity();
+        }
       }
-    if (m_Verbose) std::cout<<"Using the following matrix:"<<std::endl;
-    if (m_Verbose) std::cout<<matrix<<std::endl;
-    typename itk::Matrix<double, Dimension, Dimension> rotationMatrix=clitk::GetRotationalPartMatrix(matrix);
-    typename itk::Vector<double,Dimension> translationPart= clitk::GetTranslationPartMatrix(matrix);
-    
+    if (m_Verbose)
+      std::cout << "Using the following matrix:" << std::endl
+                << matrix << std::endl;
+    typename itk::Matrix<double, Dimension, Dimension> rotationMatrix = clitk::GetRotationalPartMatrix(matrix);
+    typename itk::Vector<double, Dimension> translationPart = clitk::GetTranslationPartMatrix(matrix);
+
     // Transform
     typedef itk::AffineTransform<double, Dimension> AffineTransformType;
     typename AffineTransformType::Pointer affineTransform=AffineTransformType::New();
     affineTransform->SetMatrix(rotationMatrix);
     affineTransform->SetTranslation(translationPart);
 
-    // Interp    
+    // Interp
     typedef clitk::GenericInterpolator<args_info_type, InputImageType, double> GenericInterpolatorType;
     typename GenericInterpolatorType::Pointer genericInterpolator=GenericInterpolatorType::New();
     genericInterpolator->SetArgsInfo(m_ArgsInfo);
-    
+
     // Properties
-    if (m_ArgsInfo.like_given)
-      {
-       typename InputReaderType::Pointer likeReader=InputReaderType::New();
-       likeReader->SetFileName(m_ArgsInfo.like_arg);
-       likeReader->Update();
-       resampler->SetOutputParametersFromImage(likeReader->GetOutput());
+    if (m_ArgsInfo.like_given) {
+      typename InputReaderType::Pointer likeReader=InputReaderType::New();
+      likeReader->SetFileName(m_ArgsInfo.like_arg);
+      likeReader->Update();
+      resampler->SetOutputParametersFromImage(likeReader->GetOutput());
+      resampler->SetOutputDirection(likeReader->GetOutput()->GetDirection());
+      if (autoGaussEnabled) { // Automated sigma when downsample
+        for(unsigned int i=0; i<Dimension; i++) {
+          if (likeReader->GetOutput()->GetSpacing()[i] > input->GetSpacing()[i]) { // downsample
+            gaussianSigma[i] = 0.5*likeReader->GetOutput()->GetSpacing()[i];// / inputSpacing[i]);
+          }
+          else gaussianSigma[i] = 0; // will be ignore after
+        }
+      }
+    } else if(m_ArgsInfo.transform_grid_flag) {
+      typename itk::Matrix<double, Dimension+1, Dimension+1> invMatrix( matrix.GetInverse() );
+      typename itk::Matrix<double, Dimension, Dimension> invRotMatrix( clitk::GetRotationalPartMatrix(invMatrix) );
+      typename itk::Vector<double,Dimension> invTrans =  clitk::GetTranslationPartMatrix(invMatrix);
+      
+      // Display warning
+      if (m_ArgsInfo.spacing_given)
+        std::cout << "Warning --spacing ignored (because --transform_grid_flag)" << std::endl;
+      if (m_ArgsInfo.origin_given)
+        std::cout << "Warning --origin ignored (because --transform_grid_flag)" << std::endl;
+
+      // Origin is influenced by translation but not by input direction
+      typename InputImageType::PointType outputOrigin;
+      outputOrigin = invRotMatrix *
+        input->GetOrigin() +
+        invTrans;
+
+      // Size is influenced by affine transform matrix and input direction
+      // Size is converted to double, transformed and converted back to size type.
+      // Determine the bounding box tranforming all corners
+      vnl_vector<double> vnlOutputSize(Dimension), vnlOutputmmSize(Dimension), vnlOutputOffset(Dimension);
+      typename InputImageType::SpacingType outputSpacing;
+      for(unsigned int i=0; i< Dimension; i++) {
+        vnlOutputSize[i] = input->GetLargestPossibleRegion().GetSize()[i];
+        vnlOutputmmSize[i] = input->GetLargestPossibleRegion().GetSize()[i]*input->GetSpacing()[i];
+        vnlOutputOffset[i] = input->GetLargestPossibleRegion().GetSize()[i]*input->GetSpacing()[i];
+      }
+      vnlOutputSize = ComputeSize(vnlOutputSize, invRotMatrix.GetVnlMatrix() * input->GetDirection().GetVnlMatrix(), 0);
+      vnlOutputmmSize = ComputeSize(vnlOutputmmSize, invRotMatrix.GetVnlMatrix() * input->GetDirection().GetVnlMatrix(), 0);
+      vnlOutputOffset = ComputeSize(vnlOutputOffset, invRotMatrix.GetVnlMatrix() * input->GetDirection().GetVnlMatrix(), 1);
+      for(unsigned int i=0; i< Dimension; i++) {
+        outputSpacing[i] = vnlOutputmmSize[i]/lrint(vnlOutputSize[i]);
+        outputOrigin[i] += vnlOutputOffset[i];
+      }
+      if (autoGaussEnabled) { // Automated sigma when downsample
+        for(unsigned int i=0; i<Dimension; i++) {
+          if (outputSpacing[i] > input->GetSpacing()[i]) { // downsample
+            gaussianSigma[i] = 0.5*outputSpacing[i];// / inputSpacing[i]);
+          }
+          else gaussianSigma[i] = 0; // will be ignore after
+        }
       }
-    else
-      {
-       //Size
-       typename OutputImageType::SizeType outputSize;
-       if (m_ArgsInfo.size_given) 
-         {
-           for(unsigned int i=0; i< Dimension; i++)
-             outputSize[i]=m_ArgsInfo.size_arg[i];
-         }
-       else outputSize=input->GetLargestPossibleRegion().GetSize();
-       std::cout<<"Setting the size to "<<outputSize<<"..."<<std::endl;
-       
-       //Spacing
-       typename OutputImageType::SpacingType outputSpacing;
-       if (m_ArgsInfo.spacing_given) 
-         {
-           for(unsigned int i=0; i< Dimension; i++)
-             outputSpacing[i]=m_ArgsInfo.spacing_arg[i];
-         }
-       else outputSpacing=input->GetSpacing();
-       std::cout<<"Setting the spacing to "<<outputSpacing<<"..."<<std::endl;
-    
-       //Origin
-       typename OutputImageType::PointType outputOrigin;
-       if (m_ArgsInfo.origin_given) 
-         {
-           for(unsigned int i=0; i< Dimension; i++)
-             outputOrigin[i]=m_ArgsInfo.origin_arg[i];
-         }
-       else outputOrigin=input->GetOrigin();
-       std::cout<<"Setting the origin to "<<outputOrigin<<"..."<<std::endl;
-    
-       // Set
-       resampler->SetSize( outputSize );
-       resampler->SetOutputSpacing( outputSpacing );
-       resampler->SetOutputOrigin(  outputOrigin );
 
+      typename OutputImageType::SizeType outputSize;
+      for(unsigned int i=0; i< Dimension; i++) {
+        // If the size is negative, we have a flip and we must modify
+        // the origin and the spacing accordingly.
+        if(vnlOutputSize[i]<0.) {
+          vnlOutputSize[i] *= -1.;
+          outputOrigin[i] = outputOrigin[i] + outputSpacing[i] * (vnlOutputSize[i]-1);
+          outputSpacing[i] *= -1.;
+        }
+        outputSize[i] = lrint(vnlOutputSize[i]);
+      }
+      resampler->SetSize( outputSize );
+      resampler->SetOutputSpacing( outputSpacing );
+      resampler->SetOutputOrigin( outputOrigin );
+    } else {
+      //Size
+      typename OutputImageType::SizeType outputSize;
+      if (m_ArgsInfo.size_given) {
+        for(unsigned int i=0; i< Dimension; i++)
+          outputSize[i]=m_ArgsInfo.size_arg[i];
+      } else outputSize=input->GetLargestPossibleRegion().GetSize();
+
+      //Spacing
+      typename OutputImageType::SpacingType outputSpacing;
+      if (m_ArgsInfo.spacing_given) {
+        for(unsigned int i=0; i< Dimension; i++)
+          outputSpacing[i]=m_ArgsInfo.spacing_arg[i];
+      } else outputSpacing=input->GetSpacing();
+      if (autoGaussEnabled) { // Automated sigma when downsample
+        for(unsigned int i=0; i<Dimension; i++) {
+          if (outputSpacing[i] > input->GetSpacing()[i]) { // downsample
+            gaussianSigma[i] = 0.5*outputSpacing[i];// / inputSpacing[i]);
+          }
+          else gaussianSigma[i] = 0; // will be ignore after
+        }
       }
 
-    resampler->SetInput( input );
+      //Origin
+      typename OutputImageType::PointType outputOrigin;
+      if (m_ArgsInfo.origin_given) {
+        for(unsigned int i=0; i< Dimension; i++)
+          outputOrigin[i]=m_ArgsInfo.origin_arg[i];
+      } else outputOrigin=input->GetOrigin();
+
+      //Direction
+      typename OutputImageType::DirectionType outputDirection;
+      if (m_ArgsInfo.direction_given) {
+        for(unsigned int j=0; j< Dimension; j++)
+            for(unsigned int i=0; i< Dimension; i++)
+                outputDirection[j][i]=m_ArgsInfo.direction_arg[i+Dimension*j];
+      } else outputDirection=input->GetDirection();
+
+      // Set
+      resampler->SetSize( outputSize );
+      resampler->SetOutputSpacing( outputSpacing );
+      resampler->SetOutputOrigin(  outputOrigin );
+      resampler->SetOutputDirection( outputDirection );
+
+    }
+
+    if (m_ArgsInfo.spacinglike_given) {
+      typename InputReaderType::Pointer likeReader=InputReaderType::New();
+      likeReader->SetFileName(m_ArgsInfo.spacinglike_arg);
+      likeReader->Update(); 
+
+      // set the support like the image 
+      if (m_ArgsInfo.like_given) {
+        typename OutputImageType::SizeType outputSize;
+        outputSize[0] = ceil(resampler->GetSize()[0]*resampler->GetOutputSpacing()[0]
+                             /likeReader->GetOutput()->GetSpacing()[0]);
+        outputSize[1] = ceil(resampler->GetSize()[1]*resampler->GetOutputSpacing()[1]
+                             /likeReader->GetOutput()->GetSpacing()[1]);
+        outputSize[2] = ceil(resampler->GetSize()[2]*resampler->GetOutputSpacing()[2]
+                             /likeReader->GetOutput()->GetSpacing()[2]);
+        if (m_ArgsInfo.verbose_flag) {
+          std::cout << "Compute the number of pixels such as the support is like " << m_ArgsInfo.like_arg << std::endl;
+        }
+        resampler->SetSize( outputSize );
+      }
+
+      resampler->SetOutputSpacing( likeReader->GetOutput()->GetSpacing() );      
+    }
+
+    if (m_ArgsInfo.verbose_flag) {
+      std::cout << "Setting the output size to " << resampler->GetSize() << "..." << std::endl;
+      std::cout << "Setting the output spacing to " << resampler->GetOutputSpacing() << "..." << std::endl;
+      std::cout << "Setting the output origin to " << resampler->GetOutputOrigin() << "..." << std::endl;
+      std::cout << "Setting the output direction to " << resampler->GetOutputDirection() << "..." << std::endl;
+    }
+
+    typedef itk::RecursiveGaussianImageFilter<InputImageType, InputImageType> GaussianFilterType;
+    std::vector<typename GaussianFilterType::Pointer> gaussianFilters;
+    if (gaussianFilteringEnabled || autoGaussEnabled) {
+      for(unsigned int i=0; i<Dimension; i++) {
+        if (gaussianSigma[i] != 0) {
+          gaussianFilters.push_back(GaussianFilterType::New());
+          gaussianFilters[i]->SetDirection(i);
+          gaussianFilters[i]->SetOrder(GaussianFilterType::ZeroOrder);
+          gaussianFilters[i]->SetNormalizeAcrossScale(false);
+          gaussianFilters[i]->SetSigma(gaussianSigma[i]); // in millimeter !
+          if (gaussianFilters.size() == 1) { // first
+            gaussianFilters[0]->SetInput(input);
+          } else {
+            gaussianFilters[i]->SetInput(gaussianFilters[i-1]->GetOutput());
+          }
+        }
+      }
+      if (gaussianFilters.size() > 0) {
+        resampler->SetInput(gaussianFilters[gaussianFilters.size()-1]->GetOutput());
+      } else resampler->SetInput(input);
+    } else resampler->SetInput(input);
+
     resampler->SetTransform( affineTransform );
     resampler->SetInterpolator( genericInterpolator->GetInterpolatorPointer());
     resampler->SetDefaultPixelValue( static_cast<PixelType>(m_ArgsInfo.pad_arg) );
 
-    try
-      {
-       resampler->Update();
-      }
-    catch(itk::ExceptionObject)
-      {
-       std::cerr<<"Error resampling the image"<<std::endl;
-      }
+    try {
+      resampler->Update();
+    } catch(itk::ExceptionObject) {
+      std::cerr<<"Error resampling the image"<<std::endl;
+    }
 
     typename OutputImageType::Pointer output = resampler->GetOutput();
 
@@ -217,6 +658,8 @@ namespace clitk
     writer->Update();
 
   }
+  //-------------------------------------------------------------------
+    
 
   //-------------------------------------------------------------------
   // Update with the number of dimensions and the pixeltype (components)
@@ -228,7 +671,7 @@ namespace clitk
     // ImageTypes
     typedef itk::Image<PixelType, Dimension> InputImageType;
     typedef itk::Image<PixelType, Dimension> OutputImageType;
-     
+
     // Read the input
     typedef itk::ImageFileReader<InputImageType> InputReaderType;
     typename InputReaderType::Pointer reader = InputReaderType::New();
@@ -236,94 +679,211 @@ namespace clitk
     reader->Update();
     typename InputImageType::Pointer input= reader->GetOutput();
 
+    //Gaussian pre-filtering
+    typename itk::Vector<double, Dimension> gaussianSigma;
+    gaussianSigma.Fill(0);
+    bool gaussianFilteringEnabled(false);
+    bool autoGaussEnabled(false);
+    if (m_ArgsInfo.autogauss_given) { // Gaussian filter auto
+      autoGaussEnabled = m_ArgsInfo.autogauss_flag;
+    }
+    if (m_ArgsInfo.gauss_given) { // Gaussian filter set by user
+      gaussianFilteringEnabled = true;
+      if (m_ArgsInfo.gauss_given == 1)
+      {
+        for (unsigned int i=0; i<Dimension; i++)
+        {
+          gaussianSigma[i] = m_ArgsInfo.gauss_arg[0];
+        }
+      }
+      else if (m_ArgsInfo.gauss_given == Dimension)
+      {
+        for (unsigned int i=0; i<Dimension; i++)
+        {
+          gaussianSigma[i] = m_ArgsInfo.gauss_arg[i];
+        }
+      }
+      else
+      {
+        std::cerr << "Gaussian sigma dimension is incorrect" << std::endl;
+        return;
+      }
+    }
+
     //Filter
+#if ( ITK_VERSION_MAJOR < 5 )
     typedef  itk::VectorResampleImageFilter< InputImageType,OutputImageType, double >  ResampleFilterType;
+#else
+    typedef  itk::ResampleImageFilter< InputImageType,OutputImageType, double >  ResampleFilterType;
+#endif
     typename ResampleFilterType::Pointer resampler = ResampleFilterType::New();
-    
+
     // Matrix
     typename itk::Matrix<double, Dimension+1, Dimension+1> matrix;
-    if (m_ArgsInfo.matrix_given)
-      matrix= clitk::ReadMatrix<Dimension>(m_ArgsInfo.matrix_arg);
-    else 
-      matrix.SetIdentity();
-    if (m_Verbose) std::cout<<"Using the following matrix:"<<std::endl;
-    if (m_Verbose) std::cout<<matrix<<std::endl;
-    typename itk::Matrix<double, Dimension, Dimension> rotationMatrix=clitk::GetRotationalPartMatrix(matrix);
-    typename itk::Vector<double, Dimension> translationPart= clitk::GetTranslationPartMatrix(matrix);
-    
+    if (m_ArgsInfo.rotate_given || m_ArgsInfo.translate_given)
+      {
+        if (m_ArgsInfo.matrix_given)
+          {
+            std::cerr << "You must use either rotate/translate or matrix options" << std::endl;
+            return;
+          }
+        itk::Array<double> transformParameters(2 * Dimension);
+        transformParameters.Fill(0.0);
+        if (m_ArgsInfo.rotate_given)
+          {
+            if (Dimension == 2)
+              transformParameters[0] = m_ArgsInfo.rotate_arg[0];
+            else
+              for (unsigned int i = 0; i < 3; i++)
+                transformParameters[i] = m_ArgsInfo.rotate_arg[i];
+          }
+        if (m_ArgsInfo.translate_given)
+          {
+            int pos = 3;
+            if (Dimension == 2)
+              pos = 1;
+            for (unsigned int i = 0; i < Dimension && i < 3; i++)
+              transformParameters[pos++] = m_ArgsInfo.translate_arg[i];
+          }
+        if (Dimension == 4)
+          {
+            matrix.SetIdentity();
+            itk::Matrix<double, 4, 4> tmp = GetForwardAffineMatrix3D(transformParameters);
+            for (unsigned int i = 0; i < 3; ++i)
+              for (unsigned int j = 0; j < 3; ++j)
+                matrix[i][j] = tmp[i][j];
+            for (unsigned int i = 0; i < 3; ++i)
+              matrix[i][4] = tmp[i][3];
+          }
+        else
+          matrix = GetForwardAffineMatrix<Dimension>(transformParameters);
+      }
+    else
+      {
+        if (m_ArgsInfo.matrix_given)
+          {
+            matrix= clitk::ReadMatrix<Dimension>(m_ArgsInfo.matrix_arg);
+            if (m_Verbose) std::cout << "Reading the matrix..." << std::endl;
+          }
+        else
+          matrix.SetIdentity();
+      }
+    if (m_Verbose)
+      std::cout << "Using the following matrix:" << std::endl
+                << matrix << std::endl;
+    typename itk::Matrix<double, Dimension, Dimension> rotationMatrix = clitk::GetRotationalPartMatrix(matrix);
+    typename itk::Vector<double, Dimension> translationPart = clitk::GetTranslationPartMatrix(matrix);
+
     // Transform
     typedef itk::AffineTransform<double, Dimension> AffineTransformType;
     typename AffineTransformType::Pointer affineTransform=AffineTransformType::New();
     affineTransform->SetMatrix(rotationMatrix);
     affineTransform->SetTranslation(translationPart);
 
-    // Interp    
+    // Interp
     typedef clitk::GenericVectorInterpolator<args_info_type, InputImageType, double> GenericInterpolatorType;
     typename GenericInterpolatorType::Pointer genericInterpolator=GenericInterpolatorType::New();
     genericInterpolator->SetArgsInfo(m_ArgsInfo);
-    
+
     // Properties
-    if (m_ArgsInfo.like_given)
-      {
-       typename InputReaderType::Pointer likeReader=InputReaderType::New();
-       likeReader->SetFileName(m_ArgsInfo.like_arg);
-       likeReader->Update();
-       resampler->SetSize( likeReader->GetOutput()->GetLargestPossibleRegion().GetSize() );
-       resampler->SetOutputSpacing( likeReader->GetOutput()->GetSpacing() );
-       resampler->SetOutputOrigin(  likeReader->GetOutput()->GetOrigin() );
+    if (m_ArgsInfo.like_given) {
+      typename InputReaderType::Pointer likeReader=InputReaderType::New();
+      likeReader->SetFileName(m_ArgsInfo.like_arg);
+      likeReader->Update();
+      resampler->SetSize( likeReader->GetOutput()->GetLargestPossibleRegion().GetSize() );
+      resampler->SetOutputSpacing( likeReader->GetOutput()->GetSpacing() );
+      resampler->SetOutputOrigin(  likeReader->GetOutput()->GetOrigin() );
+      resampler->SetOutputDirection( likeReader->GetOutput()->GetDirection() );
+      if (autoGaussEnabled) { // Automated sigma when downsample
+        for(unsigned int i=0; i<Dimension; i++) {
+          if (likeReader->GetOutput()->GetSpacing()[i] > input->GetSpacing()[i]) { // downsample
+            gaussianSigma[i] = 0.5*likeReader->GetOutput()->GetSpacing()[i];// / inputSpacing[i]);
+          }
+          else gaussianSigma[i] = 0; // will be ignore after
+        }
       }
-    else
-      {
-       //Size
-       typename OutputImageType::SizeType outputSize;
-       if (m_ArgsInfo.size_given) 
-         {
-           for(unsigned int i=0; i< Dimension; i++)
-             outputSize[i]=m_ArgsInfo.size_arg[i];
-         }
-       else outputSize=input->GetLargestPossibleRegion().GetSize();
-       std::cout<<"Setting the size to "<<outputSize<<"..."<<std::endl;
-       
-       //Spacing
-       typename OutputImageType::SpacingType outputSpacing;
-       if (m_ArgsInfo.spacing_given) 
-         {
-           for(unsigned int i=0; i< Dimension; i++)
-             outputSpacing[i]=m_ArgsInfo.spacing_arg[i];
-         }
-       else outputSpacing=input->GetSpacing();
-       std::cout<<"Setting the spacing to "<<outputSpacing<<"..."<<std::endl;
-    
-       //Origin
-       typename OutputImageType::PointType outputOrigin;
-       if (m_ArgsInfo.origin_given) 
-         {
-           for(unsigned int i=0; i< Dimension; i++)
-             outputOrigin[i]=m_ArgsInfo.origin_arg[i];
-         }
-       else outputOrigin=input->GetOrigin();
-       std::cout<<"Setting the origin to "<<outputOrigin<<"..."<<std::endl;
-    
-       // Set
-       resampler->SetSize( outputSize );
-       resampler->SetOutputSpacing( outputSpacing );
-       resampler->SetOutputOrigin(  outputOrigin );
-
+    } else {
+      //Size
+      typename OutputImageType::SizeType outputSize;
+      if (m_ArgsInfo.size_given) {
+        for(unsigned int i=0; i< Dimension; i++)
+          outputSize[i]=m_ArgsInfo.size_arg[i];
+      } else outputSize=input->GetLargestPossibleRegion().GetSize();
+      std::cout<<"Setting the size to "<<outputSize<<"..."<<std::endl;
+
+      //Spacing
+      typename OutputImageType::SpacingType outputSpacing;
+      if (m_ArgsInfo.spacing_given) {
+        for(unsigned int i=0; i< Dimension; i++)
+          outputSpacing[i]=m_ArgsInfo.spacing_arg[i];
+      } else outputSpacing=input->GetSpacing();
+      if (autoGaussEnabled) { // Automated sigma when downsample
+        for(unsigned int i=0; i<Dimension; i++) {
+          if (outputSpacing[i] > input->GetSpacing()[i]) { // downsample
+            gaussianSigma[i] = 0.5*outputSpacing[i];// / inputSpacing[i]);
+          }
+          else gaussianSigma[i] = 0; // will be ignore after
+        }
       }
+      std::cout<<"Setting the spacing to "<<outputSpacing<<"..."<<std::endl;
+
+      //Origin
+      typename OutputImageType::PointType outputOrigin;
+      if (m_ArgsInfo.origin_given) {
+        for(unsigned int i=0; i< Dimension; i++)
+          outputOrigin[i]=m_ArgsInfo.origin_arg[i];
+      } else outputOrigin=input->GetOrigin();
+      std::cout<<"Setting the origin to "<<outputOrigin<<"..."<<std::endl;
+
+      //Direction
+      typename OutputImageType::DirectionType outputDirection;
+      if (m_ArgsInfo.direction_given) {
+        for(unsigned int j=0; j< Dimension; j++)
+            for(unsigned int i=0; i< Dimension; i++)
+                outputDirection[j][i]=m_ArgsInfo.direction_arg[i+Dimension*j];
+      } else outputDirection=input->GetDirection();
+      std::cout<<"Setting the direction to "<<outputDirection<<"..."<<std::endl;
+
+      // Set
+      resampler->SetSize( outputSize );
+      resampler->SetOutputSpacing( outputSpacing );
+      resampler->SetOutputOrigin(  outputOrigin );
+      resampler->SetOutputDirection( outputDirection );
+
+    }
+
+    typedef itk::RecursiveGaussianImageFilter<InputImageType, InputImageType> GaussianFilterType;
+    std::vector<typename GaussianFilterType::Pointer> gaussianFilters;
+    if (gaussianFilteringEnabled || autoGaussEnabled) {
+      for(unsigned int i=0; i<Dimension; i++) {
+        if (gaussianSigma[i] != 0) {
+          gaussianFilters.push_back(GaussianFilterType::New());
+          gaussianFilters[i]->SetDirection(i);
+          gaussianFilters[i]->SetOrder(GaussianFilterType::ZeroOrder);
+          gaussianFilters[i]->SetNormalizeAcrossScale(false);
+          gaussianFilters[i]->SetSigma(gaussianSigma[i]); // in millimeter !
+          if (gaussianFilters.size() == 1) { // first
+            gaussianFilters[0]->SetInput(input);
+          } else {
+            gaussianFilters[i]->SetInput(gaussianFilters[i-1]->GetOutput());
+          }
+        }
+      }
+      if (gaussianFilters.size() > 0) {
+        resampler->SetInput(gaussianFilters[gaussianFilters.size()-1]->GetOutput());
+      } else resampler->SetInput(input);
+    } else resampler->SetInput(input);
 
     resampler->SetInput( input );
     resampler->SetTransform( affineTransform );
     resampler->SetInterpolator( genericInterpolator->GetInterpolatorPointer());
     resampler->SetDefaultPixelValue( static_cast<PixelType>(m_ArgsInfo.pad_arg) );
 
-    try
-      {
-       resampler->Update();
-      }
-    catch(itk::ExceptionObject)
-      {
-       std::cerr<<"Error resampling the image"<<std::endl;
-      }
+    try {
+      resampler->Update();
+    } catch(itk::ExceptionObject) {
+      std::cerr<<"Error resampling the image"<<std::endl;
+    }
 
     typename OutputImageType::Pointer output = resampler->GetOutput();
 
@@ -335,8 +895,8 @@ namespace clitk
     writer->Update();
 
   }
-
+  //-------------------------------------------------------------------
 
 } //end clitk
+
 #endif //#define clitkAffineTransformGenericFilter_txx