X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?a=blobdiff_plain;f=common%2FvvImage.txx;h=cc047bb1caf9c69bb187b52ab94311a14c81751f;hb=08f7de414957e92b25ca5b299007e941b610d3a8;hp=e73cd27fc4d22153365031d6654c897011b1296e;hpb=97e94d6d86e558d1d377486bf2db1549c06f4fd1;p=clitk.git diff --git a/common/vvImage.txx b/common/vvImage.txx old mode 100755 new mode 100644 index e73cd27..cc047bb --- a/common/vvImage.txx +++ b/common/vvImage.txx @@ -1,26 +1,110 @@ +/*========================================================================= + Program: vv http://www.creatis.insa-lyon.fr/rio/vv + + Authors belong to: + - University of LYON http://www.universite-lyon.fr/ + - Léon Bérard cancer center http://www.centreleonberard.fr + - CREATIS CNRS laboratory http://www.creatis.insa-lyon.fr + + This software is distributed WITHOUT ANY WARRANTY; without even + the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR + PURPOSE. See the copyright notices for more information. + + It is distributed under dual licence + + - BSD See included LICENSE.txt file + - CeCILL-B http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html +===========================================================================*/ #include +#include //-------------------------------------------------------------------- template void vvImage::AddItkImage(TItkImageType *input) { - mImageDimension = TItkImageType::ImageDimension; + // Update input before conversion to enable exceptions thrown by the ITK pipeline. + // Otherwise, vtkImageImport catches the exception for us. + input->Update(); + + // Convert from ITK object to VTK object + mImageDimension = TItkImageType::ImageDimension; typedef itk::ImageToVTKImageFilter ConverterType; typename ConverterType::Pointer converter = ConverterType::New(); + mItkToVtkConverters.push_back(dynamic_cast< itk::ProcessObject *>(converter.GetPointer())); converter->SetInput(input); converter->Update(); + mVtkImages.push_back( converter->GetOutput() ); - mItkToVtkConverters.push_back(dynamic_cast< itk::ProcessObject *>(converter.GetPointer())); - mVtkImages.push_back(converter->GetOutput()); + // Account for direction in transform. The offset is already accounted for + // in the VTK image coordinates, no need to put it in the transform. + vtkSmartPointer matrix = vtkSmartPointer::New(); + matrix->Identity(); + for(unsigned int i=0; iGetImageDimension(); i++) { + for(unsigned int j=0; jGetImageDimension(); j++) { +#if VTK_MAJOR_VERSION <= 6 + (*matrix)[i][j] = input->GetDirection()[i][j]; + // Direction is used around the image origin in ITK + (*matrix)[i][3] -= (*matrix)[i][j] * input->GetOrigin()[j]; +#else + (*matrix).SetElement(i, j, input->GetDirection()[i][j]); + // Direction is used around the image origin in ITK + (*matrix).SetElement(i, 3, (*matrix).GetElement(i,3) - (*matrix).GetElement(i,j) * input->GetOrigin()[j]); +#endif + } +#if VTK_MAJOR_VERSION <= 6 + (*matrix)[i][3] += input->GetOrigin()[i]; +#else + (*matrix).SetElement(i, 3, (*matrix).GetElement(i,3) + input->GetOrigin()[i]); +#endif + } + + // GetDirection provides the forward transform, vtkImageReslice wants the inverse + matrix->Invert(); + + mTransform.push_back(vtkSmartPointer::New()); + mTransform.back()->SetMatrix(matrix); + //META DATA + mDictionary.push_back(&(input->GetMetaDataDictionary())); +} +//-------------------------------------------------------------------- - //mVtkImageReslice.push_back(vtkSmartPointer::New()); - //mVtkImageReslice.back()->SetInterpolationModeToLinear(); - //mVtkImageReslice.back()->AutoCropOutputOn(); - //mVtkImageReslice.back()->SetBackgroundColor(-1000,-1000,-1000,1); - //mVtkImageReslice.back()->SetResliceTransform(mTransform); - //mVtkImageReslice.back()->SetInput(0, image); - //mVtkImageReslice.back()->Update(); - //mVtkImages.push_back( mVtkImageReslice.back()->GetOutput(0) ); +/** Dispatch the computation of scalar range between vector and scalar image */ +template +void vvImage::ComputeScalarRangeBase(itk::Image *input) +{ + itkStaticConstMacro(Dimension1, unsigned int, itk::PixelTraits< TPixelType >::Dimension); + ComputeScalarRange(DimensionDispatch< Dimension1 >(), input); +} + +//-------------------------------------------------------------------- +/** Compute the scalar range for a vector pixel type */ +/** TO DO*/ +template +void vvImage::ComputeScalarRange(DimensionDispatchBase, itk::Image *input) +{ +} + +//-------------------------------------------------------------------- +/** Compute the scalar range for a scalar pixel type */ +template +void vvImage::ComputeScalarRange(DimensionDispatch< 1 >, itk::Image *input) +{ + typedef typename itk::Image TItkImageType; + typedef itk::MinimumMaximumImageCalculator ImageCalculatorFilterType; + + typename ImageCalculatorFilterType::Pointer imageCalculatorFilter = ImageCalculatorFilterType::New (); + TPixelType tempMin, tempMax; + double tempRange[2]; + imageCalculatorFilter->SetImage(input); + imageCalculatorFilter->Compute(); + tempMin= imageCalculatorFilter->GetMinimum(); + tempMax= imageCalculatorFilter->GetMaximum(); + + tempRange[0] = (double) tempMin; + tempRange[1] = (double) tempMax; + + if (tempRange[0] < mrange[0]) mrange[0]=tempRange[0]; + if (tempRange[1] > mrange[1]) mrange[1]=tempRange[1]; } //--------------------------------------------------------------------