X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?a=blobdiff_plain;f=octave_packages%2Fm%2Fgeneral%2Finterpn.m;fp=octave_packages%2Fm%2Fgeneral%2Finterpn.m;h=91afe95958faecd78e7b70b31551c3e7ce57a565;hb=1c0469ada9531828709108a4882a751d2816994a;hp=0000000000000000000000000000000000000000;hpb=63de9f36673d49121015e3695f2c336ea92bc278;p=CreaPhase.git diff --git a/octave_packages/m/general/interpn.m b/octave_packages/m/general/interpn.m new file mode 100644 index 0000000..91afe95 --- /dev/null +++ b/octave_packages/m/general/interpn.m @@ -0,0 +1,314 @@ +## Copyright (C) 2007-2012 David Bateman +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 3 of the License, or (at +## your option) any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, see +## . + +## -*- texinfo -*- +## @deftypefn {Function File} {@var{vi} =} interpn (@var{x1}, @var{x2}, @dots{}, @var{v}, @var{y1}, @var{y2}, @dots{}) +## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{y1}, @var{y2}, @dots{}) +## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{m}) +## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}) +## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}) +## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}, @var{extrapval}) +## +## Perform @var{n}-dimensional interpolation, where @var{n} is at least two. +## Each element of the @var{n}-dimensional array @var{v} represents a value +## at a location given by the parameters @var{x1}, @var{x2}, @dots{}, @var{xn}. +## The parameters @var{x1}, @var{x2}, @dots{}, @var{xn} are either +## @var{n}-dimensional arrays of the same size as the array @var{v} in +## the 'ndgrid' format or vectors. The parameters @var{y1}, etc. respect a +## similar format to @var{x1}, etc., and they represent the points at which +## the array @var{vi} is interpolated. +## +## If @var{x1}, @dots{}, @var{xn} are omitted, they are assumed to be +## @code{x1 = 1 : size (@var{v}, 1)}, etc. If @var{m} is specified, then +## the interpolation adds a point half way between each of the interpolation +## points. This process is performed @var{m} times. If only @var{v} is +## specified, then @var{m} is assumed to be @code{1}. +## +## Method is one of: +## +## @table @asis +## @item 'nearest' +## Return the nearest neighbor. +## +## @item 'linear' +## Linear interpolation from nearest neighbors. +## +## @item 'cubic' +## Cubic interpolation from four nearest neighbors (not implemented yet). +## +## @item 'spline' +## Cubic spline interpolation---smooth first and second derivatives +## throughout the curve. +## @end table +## +## The default method is 'linear'. +## +## If @var{extrapval} is the scalar value, use it to replace the values +## beyond the endpoints with that number. If @var{extrapval} is missing, +## assume NA. +## @seealso{interp1, interp2, spline, ndgrid} +## @end deftypefn + +function vi = interpn (varargin) + + method = "linear"; + extrapval = NA; + nargs = nargin; + + if (nargin < 1 || ! isnumeric (varargin{1})) + print_usage (); + endif + + if (ischar (varargin{end})) + method = varargin{end}; + nargs = nargs - 1; + elseif (nargs > 1 && ischar (varargin{end - 1})) + if (! isnumeric (varargin{end}) || ! isscalar (varargin{end})) + error ("interpn: extrapal is expected to be a numeric scalar"); + endif + method = varargin{end - 1}; + extrapval = varargin{end}; + nargs = nargs - 2; + endif + + if (nargs < 3) + v = varargin{1}; + m = 1; + if (nargs == 2) + if (ischar (varargin{2})) + method = varargin{2}; + elseif (isnumeric (m) && isscalar (m) && fix (m) == m) + m = varargin{2}; + else + print_usage (); + endif + endif + sz = size (v); + nd = ndims (v); + x = cell (1, nd); + y = cell (1, nd); + for i = 1 : nd; + x{i} = 1 : sz(i); + y{i} = 1 : (1 / (2 ^ m)) : sz(i); + endfor + y{1} = y{1}.'; + [y{:}] = ndgrid (y{:}); + elseif (! isvector (varargin{1}) && nargs == (ndims (varargin{1}) + 1)) + v = varargin{1}; + sz = size (v); + nd = ndims (v); + x = cell (1, nd); + y = varargin (2 : nargs); + for i = 1 : nd; + x{i} = 1 : sz(i); + endfor + elseif (rem (nargs, 2) == 1 && nargs == + (2 * ndims (varargin{ceil (nargs / 2)})) + 1) + nv = ceil (nargs / 2); + v = varargin{nv}; + sz = size (v); + nd = ndims (v); + x = varargin (1 : (nv - 1)); + y = varargin ((nv + 1) : nargs); + else + error ("interpn: wrong number or incorrectly formatted input arguments"); + endif + + if (any (! cellfun ("isvector", x))) + for i = 2 : nd + if (! size_equal (x{1}, x{i}) || ! size_equal (x{i}, v)) + error ("interpn: dimensional mismatch"); + endif + idx (1 : nd) = {1}; + idx (i) = ":"; + x{i} = x{i}(idx{:})(:); + endfor + idx (1 : nd) = {1}; + idx (1) = ":"; + x{1} = x{1}(idx{:})(:); + endif + + method = tolower (method); + + all_vectors = all (cellfun ("isvector", y)); + different_lengths = numel (unique (cellfun ("numel", y))) > 1; + if (all_vectors && different_lengths) + [foobar(1:numel(y)).y] = ndgrid (y{:}); + y = {foobar.y}; + endif + + if (strcmp (method, "linear")) + vi = __lin_interpn__ (x{:}, v, y{:}); + vi (isna (vi)) = extrapval; + elseif (strcmp (method, "nearest")) + yshape = size (y{1}); + yidx = cell (1, nd); + for i = 1 : nd + y{i} = y{i}(:); + yidx{i} = lookup (x{i}, y{i}, "lr"); + endfor + idx = cell (1,nd); + for i = 1 : nd + idx{i} = yidx{i} + (y{i} - x{i}(yidx{i})(:) >= x{i}(yidx{i} + 1)(:) - y{i}); + endfor + vi = v (sub2ind (sz, idx{:})); + idx = zeros (prod (yshape), 1); + for i = 1 : nd + idx |= y{i} < min (x{i}(:)) | y{i} > max (x{i}(:)); + endfor + vi(idx) = extrapval; + vi = reshape (vi, yshape); + elseif (strcmp (method, "spline")) + if (any (! cellfun ("isvector", y))) + for i = 2 : nd + if (! size_equal (y{1}, y{i})) + error ("interpn: dimensional mismatch"); + endif + idx (1 : nd) = {1}; + idx (i) = ":"; + y{i} = y{i}(idx{:}); + endfor + idx (1 : nd) = {1}; + idx (1) = ":"; + y{1} = y{1}(idx{:}); + endif + + vi = __splinen__ (x, v, y, extrapval, "interpn"); + + if (size_equal (y{:})) + ly = length (y{1}); + idx = cell (1, ly); + q = cell (1, nd); + for i = 1 : ly + q(:) = i; + idx {i} = q; + endfor + vi = vi (cellfun (@(x) sub2ind (size(vi), x{:}), idx)); + vi = reshape (vi, size(y{1})); + endif + elseif (strcmp (method, "cubic")) + error ("interpn: cubic interpolation not yet implemented"); + else + error ("interpn: unrecognized interpolation METHOD"); + endif + +endfunction + +%!demo +%! A=[13,-1,12;5,4,3;1,6,2]; +%! x=[0,1,4]; y=[10,11,12]; +%! xi=linspace(min(x),max(x),17); +%! yi=linspace(min(y),max(y),26)'; +%! mesh(xi,yi,interpn(x,y,A.',xi,yi,"linear").'); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; + +%!demo +%! A=[13,-1,12;5,4,3;1,6,2]; +%! x=[0,1,4]; y=[10,11,12]; +%! xi=linspace(min(x),max(x),17); +%! yi=linspace(min(y),max(y),26)'; +%! mesh(xi,yi,interpn(x,y,A.',xi,yi,"nearest").'); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; + +%!#demo +%! A=[13,-1,12;5,4,3;1,6,2]; +%! x=[0,1,2]; y=[10,11,12]; +%! xi=linspace(min(x),max(x),17); +%! yi=linspace(min(y),max(y),26)'; +%! mesh(xi,yi,interpn(x,y,A.',xi,yi,"cubic").'); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; + +%!demo +%! A=[13,-1,12;5,4,3;1,6,2]; +%! x=[0,1,2]; y=[10,11,12]; +%! xi=linspace(min(x),max(x),17); +%! yi=linspace(min(y),max(y),26)'; +%! mesh(xi,yi,interpn(x,y,A.',xi,yi,"spline").'); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; + + +%!demo +%! x = y = z = -1:1; +%! f = @(x,y,z) x.^2 - y - z.^2; +%! [xx, yy, zz] = meshgrid (x, y, z); +%! v = f (xx,yy,zz); +%! xi = yi = zi = -1:0.1:1; +%! [xxi, yyi, zzi] = ndgrid (xi, yi, zi); +%! vi = interpn(x, y, z, v, xxi, yyi, zzi, 'spline'); +%! mesh (yi, zi, squeeze (vi(1,:,:))); + + +%!test +%! [x,y,z] = ndgrid(0:2); +%! f = x+y+z; +%! assert (interpn(x,y,z,f,[.5 1.5],[.5 1.5],[.5 1.5]), [1.5, 4.5]) +%! assert (interpn(x,y,z,f,[.51 1.51],[.51 1.51],[.51 1.51],'nearest'), [3, 6]) +%! assert (interpn(x,y,z,f,[.5 1.5],[.5 1.5],[.5 1.5],'spline'), [1.5, 4.5]) +%! assert (interpn(x,y,z,f,x,y,z), f) +%! assert (interpn(x,y,z,f,x,y,z,'nearest'), f) +%! assert (interpn(x,y,z,f,x,y,z,'spline'), f) + +%!test +%! [x, y, z] = ndgrid (0:2, 1:4, 2:6); +%! f = x + y + z; +%! xi = [0.5 1.0 1.5]; +%! yi = [1.5 2.0 2.5 3.5]; +%! zi = [2.5 3.5 4.0 5.0 5.5]; +%! fi = interpn (x, y, z, f, xi, yi, zi); +%! [xi, yi, zi] = ndgrid (xi, yi, zi); +%! assert (fi, xi + yi + zi) + +%!test +%! xi = 0:2; +%! yi = 1:4; +%! zi = 2:6; +%! [x, y, z] = ndgrid (xi, yi, zi); +%! f = x + y + z; +%! fi = interpn (x, y, z, f, xi, yi, zi, "nearest"); +%! assert (fi, x + y + z) + +%!test +%! [x,y,z] = ndgrid(0:2); +%! f = x.^2+y.^2+z.^2; +%! assert (interpn(x,y,-z,f,1.5,1.5,-1.5), 7.5) + +%!test % for Matlab-compatible rounding for 'nearest' +%! X = meshgrid (1:4); +%! assert (interpn (X, 2.5, 2.5, 'nearest'), 3); + +%!shared z, zout, tol +%! z = zeros (3, 3, 3); +%! zout = zeros (5, 5, 5); +%! z(:,:,1) = [1 3 5; 3 5 7; 5 7 9]; +%! z(:,:,2) = z(:,:,1) + 2; +%! z(:,:,3) = z(:,:,2) + 2; +%! for n = 1:5 +%! zout(:,:,n) = [1 2 3 4 5; +%! 2 3 4 5 6; +%! 3 4 5 6 7; +%! 4 5 6 7 8; +%! 5 6 7 8 9] + (n-1); +%! end +%! tol = 10 * eps; +%!assert (interpn (z), zout, tol) +%!assert (interpn (z, "linear"), zout, tol) +%!assert (interpn (z, "spline"), zout, tol)