X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?a=blobdiff_plain;f=octave_packages%2Fm%2Foptimization%2Ffzero.m;fp=octave_packages%2Fm%2Foptimization%2Ffzero.m;h=8a3e9b6f2fb44a70a04beadbc198f7bf739033a2;hb=1c0469ada9531828709108a4882a751d2816994a;hp=0000000000000000000000000000000000000000;hpb=63de9f36673d49121015e3695f2c336ea92bc278;p=CreaPhase.git diff --git a/octave_packages/m/optimization/fzero.m b/octave_packages/m/optimization/fzero.m new file mode 100644 index 0000000..8a3e9b6 --- /dev/null +++ b/octave_packages/m/optimization/fzero.m @@ -0,0 +1,363 @@ +## Copyright (C) 2008-2012 VZLU Prague, a.s. +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 3 of the License, or (at +## your option) any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, see +## . +## +## Author: Jaroslav Hajek + +## -*- texinfo -*- +## @deftypefn {Function File} {} fzero (@var{fun}, @var{x0}) +## @deftypefnx {Function File} {} fzero (@var{fun}, @var{x0}, @var{options}) +## @deftypefnx {Function File} {[@var{x}, @var{fval}, @var{info}, @var{output}] =} fzero (@dots{}) +## Find a zero of a univariate function. +## +## @var{fun} is a function handle, inline function, or string +## containing the name of the function to evaluate. +## @var{x0} should be a two-element vector specifying two points which +## bracket a zero. In other words, there must be a change in sign of the +## function between @var{x0}(1) and @var{x0}(2). More mathematically, the +## following must hold +## +## @example +## sign (@var{fun}(@var{x0}(1))) * sign (@var{fun}(@var{x0}(2))) <= 0 +## @end example +## +## If @var{x0} is a single scalar then several nearby and distant +## values are probed in an attempt to obtain a valid bracketing. If this +## is not successful, the function fails. +## @var{options} is a structure specifying additional options. +## Currently, @code{fzero} +## recognizes these options: @code{"FunValCheck"}, @code{"OutputFcn"}, +## @code{"TolX"}, @code{"MaxIter"}, @code{"MaxFunEvals"}. +## For a description of these options, see @ref{doc-optimset,,optimset}. +## +## On exit, the function returns @var{x}, the approximate zero point +## and @var{fval}, the function value thereof. +## @var{info} is an exit flag that can have these values: +## +## @itemize +## @item 1 +## The algorithm converged to a solution. +## +## @item 0 +## Maximum number of iterations or function evaluations has been reached. +## +## @item -1 +## The algorithm has been terminated from user output function. +## +## @item -5 +## The algorithm may have converged to a singular point. +## @end itemize +## +## @var{output} is a structure containing runtime information about the +## @code{fzero} algorithm. Fields in the structure are: +## +## @itemize +## @item iterations +## Number of iterations through loop. +## +## @item nfev +## Number of function evaluations. +## +## @item bracketx +## A two-element vector with the final bracketing of the zero along the x-axis. +## +## @item brackety +## A two-element vector with the final bracketing of the zero along the y-axis. +## @end itemize +## @seealso{optimset, fsolve} +## @end deftypefn + +## This is essentially the ACM algorithm 748: Enclosing Zeros of +## Continuous Functions due to Alefeld, Potra and Shi, ACM Transactions +## on Mathematical Software, Vol. 21, No. 3, September 1995. Although +## the workflow should be the same, the structure of the algorithm has +## been transformed non-trivially; instead of the authors' approach of +## sequentially calling building blocks subprograms we implement here a +## FSM version using one interior point determination and one bracketing +## per iteration, thus reducing the number of temporary variables and +## simplifying the algorithm structure. Further, this approach reduces +## the need for external functions and error handling. The algorithm has +## also been slightly modified. + +## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup. +## PKG_ADD: [~] = __all_opts__ ("fzero"); + +function [x, fval, info, output] = fzero (fun, x0, options = struct ()) + + ## Get default options if requested. + if (nargin == 1 && ischar (fun) && strcmp (fun, 'defaults')) + x = optimset ("MaxIter", Inf, "MaxFunEvals", Inf, "TolX", 1e-8, \ + "OutputFcn", [], "FunValCheck", "off"); + return; + endif + + if (nargin < 2 || nargin > 3) + print_usage (); + endif + + if (ischar (fun)) + fun = str2func (fun, "global"); + endif + + ## TODO + ## displev = optimget (options, "Display", "notify"); + funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on"); + outfcn = optimget (options, "OutputFcn"); + tolx = optimget (options, "TolX", 1e-8); + maxiter = optimget (options, "MaxIter", Inf); + maxfev = optimget (options, "MaxFunEvals", Inf); + + persistent mu = 0.5; + + if (funvalchk) + ## Replace fun with a guarded version. + fun = @(x) guarded_eval (fun, x); + endif + + ## The default exit flag if exceeded number of iterations. + info = 0; + niter = 0; + nfev = 0; + + x = fval = a = fa = b = fb = NaN; + eps = eps (class (x0)); + + ## Prepare... + a = x0(1); + fa = fun (a); + nfev = 1; + if (length (x0) > 1) + b = x0(2); + fb = fun (b); + nfev += 1; + else + ## Try to get b. + if (a == 0) + aa = 1; + else + aa = a; + endif + for b = [0.9*aa, 1.1*aa, aa-1, aa+1, 0.5*aa 1.5*aa, -aa, 2*aa, -10*aa, 10*aa] + fb = fun (b); nfev += 1; + if (sign (fa) * sign (fb) <= 0) + break; + endif + endfor + endif + + if (b < a) + u = a; + a = b; + b = u; + + fu = fa; + fa = fb; + fb = fu; + endif + + if (! (sign (fa) * sign (fb) <= 0)) + error ("fzero:bracket", "fzero: not a valid initial bracketing"); + endif + + slope0 = (fb - fa) / (b - a); + + if (fa == 0) + b = a; + fb = fa; + elseif (fb == 0) + a = b; + fa = fb; + endif + + itype = 1; + + if (abs (fa) < abs (fb)) + u = a; fu = fa; + else + u = b; fu = fb; + endif + + d = e = u; + fd = fe = fu; + mba = mu*(b - a); + while (niter < maxiter && nfev < maxfev) + switch (itype) + case 1 + ## The initial test. + if (b - a <= 2*(2 * abs (u) * eps + tolx)) + x = u; fval = fu; + info = 1; + break; + endif + if (abs (fa) <= 1e3*abs (fb) && abs (fb) <= 1e3*abs (fa)) + ## Secant step. + c = u - (a - b) / (fa - fb) * fu; + else + ## Bisection step. + c = 0.5*(a + b); + endif + d = u; fd = fu; + itype = 5; + case {2, 3} + l = length (unique ([fa, fb, fd, fe])); + if (l == 4) + ## Inverse cubic interpolation. + q11 = (d - e) * fd / (fe - fd); + q21 = (b - d) * fb / (fd - fb); + q31 = (a - b) * fa / (fb - fa); + d21 = (b - d) * fd / (fd - fb); + d31 = (a - b) * fb / (fb - fa); + q22 = (d21 - q11) * fb / (fe - fb); + q32 = (d31 - q21) * fa / (fd - fa); + d32 = (d31 - q21) * fd / (fd - fa); + q33 = (d32 - q22) * fa / (fe - fa); + c = a + q31 + q32 + q33; + endif + if (l < 4 || sign (c - a) * sign (c - b) > 0) + ## Quadratic interpolation + newton. + a0 = fa; + a1 = (fb - fa)/(b - a); + a2 = ((fd - fb)/(d - b) - a1) / (d - a); + ## Modification 1: this is simpler and does not seem to be worse. + c = a - a0/a1; + if (a2 != 0) + c = a - a0/a1; + for i = 1:itype + pc = a0 + (a1 + a2*(c - b))*(c - a); + pdc = a1 + a2*(2*c - a - b); + if (pdc == 0) + c = a - a0/a1; + break; + endif + c -= pc/pdc; + endfor + endif + endif + itype += 1; + case 4 + ## Double secant step. + c = u - 2*(b - a)/(fb - fa)*fu; + ## Bisect if too far. + if (abs (c - u) > 0.5*(b - a)) + c = 0.5 * (b + a); + endif + itype = 5; + case 5 + ## Bisection step. + c = 0.5 * (b + a); + itype = 2; + endswitch + + ## Don't let c come too close to a or b. + delta = 2*0.7*(2 * abs (u) * eps + tolx); + if ((b - a) <= 2*delta) + c = (a + b)/2; + else + c = max (a + delta, min (b - delta, c)); + endif + + ## Calculate new point. + x = c; + fval = fc = fun (c); + niter ++; nfev ++; + + ## Modification 2: skip inverse cubic interpolation if + ## nonmonotonicity is detected. + if (sign (fc - fa) * sign (fc - fb) >= 0) + ## The new point broke monotonicity. + ## Disable inverse cubic. + fe = fc; + else + e = d; fe = fd; + endif + + ## Bracketing. + if (sign (fa) * sign (fc) < 0) + d = b; fd = fb; + b = c; fb = fc; + elseif (sign (fb) * sign (fc) < 0) + d = a; fd = fa; + a = c; fa = fc; + elseif (fc == 0) + a = b = c; fa = fb = fc; + info = 1; + break; + else + ## This should never happen. + error ("fzero:bracket", "fzero: zero point is not bracketed"); + endif + + ## If there's an output function, use it now. + if (outfcn) + optv.funccount = nfev; + optv.fval = fval; + optv.iteration = niter; + if (outfcn (x, optv, "iter")) + info = -1; + break; + endif + endif + + if (abs (fa) < abs (fb)) + u = a; fu = fa; + else + u = b; fu = fb; + endif + if (b - a <= 2*(2 * abs (u) * eps + tolx)) + info = 1; + break; + endif + + ## Skip bisection step if successful reduction. + if (itype == 5 && (b - a) <= mba) + itype = 2; + endif + if (itype == 2) + mba = mu * (b - a); + endif + endwhile + + ## Check solution for a singularity by examining slope + if (info == 1) + if ((b - a) != 0 && abs ((fb - fa)/(b - a) / slope0) > max (1e6, 0.5/(eps+tolx))) + info = -5; + endif + endif + + output.iterations = niter; + output.funcCount = nfev; + output.bracketx = [a, b]; + output.brackety = [fa, fb]; + +endfunction + +## An assistant function that evaluates a function handle and checks for +## bad results. +function fx = guarded_eval (fun, x) + fx = fun (x); + fx = fx(1); + if (! isreal (fx)) + error ("fzero:notreal", "fzero: non-real value encountered"); + elseif (isnan (fx)) + error ("fzero:isnan", "fzero: NaN value encountered"); + endif +endfunction + +%!shared opt0 +%! opt0 = optimset ("tolx", 0); +%!assert(fzero(@cos, [0, 3], opt0), pi/2, 10*eps) +%!assert(fzero(@(x) x^(1/3) - 1e-8, [0,1], opt0), 1e-24, 1e-22*eps)