X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?a=blobdiff_plain;f=octave_packages%2Fm%2Fsparse%2Fpcr.m;fp=octave_packages%2Fm%2Fsparse%2Fpcr.m;h=1edb73ff7dbc180a50771d2e6a6b96d64553a28c;hb=1c0469ada9531828709108a4882a751d2816994a;hp=0000000000000000000000000000000000000000;hpb=63de9f36673d49121015e3695f2c336ea92bc278;p=CreaPhase.git diff --git a/octave_packages/m/sparse/pcr.m b/octave_packages/m/sparse/pcr.m new file mode 100644 index 0000000..1edb73f --- /dev/null +++ b/octave_packages/m/sparse/pcr.m @@ -0,0 +1,432 @@ +## Copyright (C) 2004-2012 Piotr Krzyzanowski +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 3 of the License, or (at +## your option) any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, see +## . + +## -*- texinfo -*- +## @deftypefn {Function File} {@var{x} =} pcr (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{m}, @var{x0}, @dots{}) +## @deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}] =} pcr (@dots{}) +## +## Solve the linear system of equations @code{@var{A} * @var{x} = @var{b}} +## by means of the Preconditioned Conjugate Residuals iterative +## method. The input arguments are +## +## @itemize +## @item +## @var{A} can be either a square (preferably sparse) matrix or a +## function handle, inline function or string containing the name +## of a function which computes @code{@var{A} * @var{x}}. In principle +## @var{A} should be symmetric and non-singular; if @code{pcr} +## finds @var{A} to be numerically singular, you will get a warning +## message and the @var{flag} output parameter will be set. +## +## @item +## @var{b} is the right hand side vector. +## +## @item +## @var{tol} is the required relative tolerance for the residual error, +## @code{@var{b} - @var{A} * @var{x}}. The iteration stops if +## @code{norm (@var{b} - @var{A} * @var{x}) <= +## @var{tol} * norm (@var{b} - @var{A} * @var{x0})}. +## If @var{tol} is empty or is omitted, the function sets +## @code{@var{tol} = 1e-6} by default. +## +## @item +## @var{maxit} is the maximum allowable number of iterations; if +## @code{[]} is supplied for @code{maxit}, or @code{pcr} has less +## arguments, a default value equal to 20 is used. +## +## @item +## @var{m} is the (left) preconditioning matrix, so that the iteration is +## (theoretically) equivalent to solving by @code{pcr} @code{@var{P} * +## @var{x} = @var{m} \ @var{b}}, with @code{@var{P} = @var{m} \ @var{A}}. +## Note that a proper choice of the preconditioner may dramatically +## improve the overall performance of the method. Instead of matrix +## @var{m}, the user may pass a function which returns the results of +## applying the inverse of @var{m} to a vector (usually this is the +## preferred way of using the preconditioner). If @code{[]} is supplied +## for @var{m}, or @var{m} is omitted, no preconditioning is applied. +## +## @item +## @var{x0} is the initial guess. If @var{x0} is empty or omitted, the +## function sets @var{x0} to a zero vector by default. +## @end itemize +## +## The arguments which follow @var{x0} are treated as parameters, and +## passed in a proper way to any of the functions (@var{A} or @var{m}) +## which are passed to @code{pcr}. See the examples below for further +## details. The output arguments are +## +## @itemize +## @item +## @var{x} is the computed approximation to the solution of +## @code{@var{A} * @var{x} = @var{b}}. +## +## @item +## @var{flag} reports on the convergence. @code{@var{flag} = 0} means +## the solution converged and the tolerance criterion given by @var{tol} +## is satisfied. @code{@var{flag} = 1} means that the @var{maxit} limit +## for the iteration count was reached. @code{@var{flag} = 3} reports t +## @code{pcr} breakdown, see [1] for details. +## +## @item +## @var{relres} is the ratio of the final residual to its initial value, +## measured in the Euclidean norm. +## +## @item +## @var{iter} is the actual number of iterations performed. +## +## @item +## @var{resvec} describes the convergence history of the method, +## so that @code{@var{resvec} (i)} contains the Euclidean norms of the +## residual after the (@var{i}-1)-th iteration, @code{@var{i} = +## 1,2, @dots{}, @var{iter}+1}. +## @end itemize +## +## Let us consider a trivial problem with a diagonal matrix (we exploit the +## sparsity of A) +## +## @example +## @group +## n = 10; +## A = sparse (diag (1:n)); +## b = rand (N, 1); +## @end group +## @end example +## +## @sc{Example 1:} Simplest use of @code{pcr} +## +## @example +## x = pcr (A, b) +## @end example +## +## @sc{Example 2:} @code{pcr} with a function which computes +## @code{@var{A} * @var{x}}. +## +## @example +## @group +## function y = apply_a (x) +## y = [1:10]' .* x; +## endfunction +## +## x = pcr ("apply_a", b) +## @end group +## @end example +## +## @sc{Example 3:} Preconditioned iteration, with full diagnostics. The +## preconditioner (quite strange, because even the original matrix +## @var{A} is trivial) is defined as a function +## +## @example +## @group +## function y = apply_m (x) +## k = floor (length (x) - 2); +## y = x; +## y(1:k) = x(1:k) ./ [1:k]'; +## endfunction +## +## [x, flag, relres, iter, resvec] = ... +## pcr (A, b, [], [], "apply_m") +## semilogy ([1:iter+1], resvec); +## @end group +## @end example +## +## @sc{Example 4:} Finally, a preconditioner which depends on a +## parameter @var{k}. +## +## @example +## @group +## function y = apply_m (x, varargin) +## k = varargin@{1@}; +## y = x; +## y(1:k) = x(1:k) ./ [1:k]'; +## endfunction +## +## [x, flag, relres, iter, resvec] = ... +## pcr (A, b, [], [], "apply_m"', [], 3) +## @end group +## @end example +## +## References: +## +## [1] W. Hackbusch, @cite{Iterative Solution of Large Sparse Systems of +## Equations}, section 9.5.4; Springer, 1994 +## +## @seealso{sparse, pcg} +## @end deftypefn + +## Author: Piotr Krzyzanowski + +function [x, flag, relres, iter, resvec] = pcr (A, b, tol, maxit, m, x0, varargin) + + breakdown = false; + + if (nargin < 6 || isempty (x0)) + x = zeros (size (b)); + else + x = x0; + endif + + if (nargin < 5) + m = []; + endif + + if (nargin < 4 || isempty (maxit)) + maxit = 20; + endif + + maxit += 2; + + if (nargin < 3 || isempty (tol)) + tol = 1e-6; + endif + + if (nargin < 2) + print_usage (); + endif + + ## init + if (isnumeric (A)) # is A a matrix? + r = b - A*x; + else # then A should be a function! + r = b - feval (A, x, varargin{:}); + endif + + if (isnumeric (m)) # is M a matrix? + if (isempty (m)) # if M is empty, use no precond + p = r; + else # otherwise, apply the precond + p = m \ r; + endif + else # then M should be a function! + p = feval (m, r, varargin{:}); + endif + + iter = 2; + + b_bot_old = 1; + q_old = p_old = s_old = zeros (size (x)); + + if (isnumeric (A)) # is A a matrix? + q = A * p; + else # then A should be a function! + q = feval (A, p, varargin{:}); + endif + + resvec(1) = abs (norm (r)); + + ## iteration + while (resvec(iter-1) > tol*resvec(1) && iter < maxit) + + if (isnumeric (m)) # is M a matrix? + if (isempty (m)) # if M is empty, use no precond + s = q; + else # otherwise, apply the precond + s = m \ q; + endif + else # then M should be a function! + s = feval (m, q, varargin{:}); + endif + b_top = r' * s; + b_bot = q' * s; + + if (b_bot == 0.0) + breakdown = true; + break; + endif + lambda = b_top / b_bot; + + x += lambda*p; + r -= lambda*q; + + if (isnumeric(A)) # is A a matrix? + t = A*s; + else # then A should be a function! + t = feval (A, s, varargin{:}); + endif + + alpha0 = (t'*s) / b_bot; + alpha1 = (t'*s_old) / b_bot_old; + + p_temp = p; + q_temp = q; + + p = s - alpha0*p - alpha1*p_old; + q = t - alpha0*q - alpha1*q_old; + + s_old = s; + p_old = p_temp; + q_old = q_temp; + b_bot_old = b_bot; + + resvec(iter) = abs (norm (r)); + iter++; + endwhile + + flag = 0; + relres = resvec(iter-1) ./ resvec(1); + iter -= 2; + if (iter >= maxit-2) + flag = 1; + if (nargout < 2) + warning ("pcr: maximum number of iterations (%d) reached\n", iter); + warning ("the initial residual norm was reduced %g times.\n", 1.0/relres); + endif + elseif (nargout < 2 && ! breakdown) + fprintf (stderr, "pcr: converged in %d iterations. \n", iter); + fprintf (stderr, "the initial residual norm was reduced %g times.\n", + 1.0 / relres); + endif + + if (breakdown) + flag = 3; + if (nargout < 2) + warning ("pcr: breakdown occurred:\n"); + warning ("system matrix singular or preconditioner indefinite?\n"); + endif + endif + +endfunction + +%!demo +%! +%! # Simplest usage of PCR (see also 'help pcr') +%! +%! N = 20; +%! A = diag(linspace(-3.1,3,N)); b = rand(N,1); y = A\b; #y is the true solution +%! x = pcr(A,b); +%! printf('The solution relative error is %g\n', norm(x-y)/norm(y)); +%! +%! # You shouldn't be afraid if PCR issues some warning messages in this +%! # example: watch out in the second example, why it takes N iterations +%! # of PCR to converge to (a very accurate, by the way) solution +%!demo +%! +%! # Full output from PCR +%! # We use this output to plot the convergence history +%! +%! N = 20; +%! A = diag(linspace(-3.1,30,N)); b = rand(N,1); X = A\b; #X is the true solution +%! [x, flag, relres, iter, resvec] = pcr(A,b); +%! printf('The solution relative error is %g\n', norm(x-X)/norm(X)); +%! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||/||b||)'); +%! semilogy([0:iter],resvec/resvec(1),'o-g;relative residual;'); +%!demo +%! +%! # Full output from PCR +%! # We use indefinite matrix based on the Hilbert matrix, with one +%! # strongly negative eigenvalue +%! # Hilbert matrix is extremely ill conditioned, so is ours, +%! # and that's why PCR WILL have problems +%! +%! N = 10; +%! A = hilb(N); A(1,1)=-A(1,1); b = rand(N,1); X = A\b; #X is the true solution +%! printf('Condition number of A is %g\n', cond(A)); +%! [x, flag, relres, iter, resvec] = pcr(A,b,[],200); +%! if (flag == 3) +%! printf('PCR breakdown. System matrix is [close to] singular\n'); +%! end +%! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)'); +%! semilogy([0:iter],resvec,'o-g;absolute residual;'); +%!demo +%! +%! # Full output from PCR +%! # We use an indefinite matrix based on the 1-D Laplacian matrix for A, +%! # and here we have cond(A) = O(N^2) +%! # That's the reason we need some preconditioner; here we take +%! # a very simple and not powerful Jacobi preconditioner, +%! # which is the diagonal of A +%! +%! # Note that we use here indefinite preconditioners! +%! +%! N = 100; +%! A = zeros(N,N); +%! for i=1:N-1 # form 1-D Laplacian matrix +%! A(i:i+1,i:i+1) = [2 -1; -1 2]; +%! endfor +%! A = [A, zeros(size(A)); zeros(size(A)), -A]; +%! b = rand(2*N,1); X = A\b; #X is the true solution +%! maxit = 80; +%! printf('System condition number is %g\n',cond(A)); +%! # No preconditioner: the convergence is very slow! +%! +%! [x, flag, relres, iter, resvec] = pcr(A,b,[],maxit); +%! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)'); +%! semilogy([0:iter],resvec,'o-g;NO preconditioning: absolute residual;'); +%! +%! pause(1); +%! # Test Jacobi preconditioner: it will not help much!!! +%! +%! M = diag(diag(A)); # Jacobi preconditioner +%! [x, flag, relres, iter, resvec] = pcr(A,b,[],maxit,M); +%! hold on; +%! semilogy([0:iter],resvec,'o-r;JACOBI preconditioner: absolute residual;'); +%! +%! pause(1); +%! # Test nonoverlapping block Jacobi preconditioner: this one should give +%! # some convergence speedup! +%! +%! M = zeros(N,N);k=4; +%! for i=1:k:N # get k x k diagonal blocks of A +%! M(i:i+k-1,i:i+k-1) = A(i:i+k-1,i:i+k-1); +%! endfor +%! M = [M, zeros(size(M)); zeros(size(M)), -M]; +%! [x, flag, relres, iter, resvec] = pcr(A,b,[],maxit,M); +%! semilogy([0:iter],resvec,'o-b;BLOCK JACOBI preconditioner: absolute residual;'); +%! hold off; +%!test +%! +%! #solve small indefinite diagonal system +%! +%! N = 10; +%! A = diag(linspace(-10.1,10,N)); b = ones(N,1); X = A\b; #X is the true solution +%! [x, flag] = pcr(A,b,[],N+1); +%! assert(norm(x-X)/norm(X)<1e-10); +%! assert(flag,0); +%! +%!test +%! +%! #solve tridiagonal system, do not converge in default 20 iterations +%! #should perform max allowable default number of iterations +%! +%! N = 100; +%! A = zeros(N,N); +%! for i=1:N-1 # form 1-D Laplacian matrix +%! A(i:i+1,i:i+1) = [2 -1; -1 2]; +%! endfor +%! b = ones(N,1); X = A\b; #X is the true solution +%! [x, flag, relres, iter, resvec] = pcr(A,b,1e-12); +%! assert(flag,1); +%! assert(relres>0.6); +%! assert(iter,20); +%! +%!test +%! +%! #solve tridiagonal system with 'prefect' preconditioner +%! #converges in one iteration +%! +%! N = 100; +%! A = zeros(N,N); +%! for i=1:N-1 # form 1-D Laplacian matrix +%! A(i:i+1,i:i+1) = [2 -1; -1 2]; +%! endfor +%! b = ones(N,1); X = A\b; #X is the true solution +%! [x, flag, relres, iter] = pcr(A,b,[],[],A,b); +%! assert(norm(x-X)/norm(X)<1e-6); +%! assert(relres<1e-6); +%! assert(flag,0); +%! assert(iter,1); #should converge in one iteration +%!