X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?a=blobdiff_plain;f=octave_packages%2Fm%2Fspecfun%2Fprimes.m;fp=octave_packages%2Fm%2Fspecfun%2Fprimes.m;h=a2e99dbb1d290177bcbe8127a4689aaf166a7ad2;hb=1c0469ada9531828709108a4882a751d2816994a;hp=0000000000000000000000000000000000000000;hpb=63de9f36673d49121015e3695f2c336ea92bc278;p=CreaPhase.git diff --git a/octave_packages/m/specfun/primes.m b/octave_packages/m/specfun/primes.m new file mode 100644 index 0000000..a2e99db --- /dev/null +++ b/octave_packages/m/specfun/primes.m @@ -0,0 +1,102 @@ +## Copyright (C) 2000-2012 Paul Kienzle +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 3 of the License, or (at +## your option) any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, see +## . + +## -*- texinfo -*- +## @deftypefn {Function File} {} primes (@var{n}) +## +## Return all primes up to @var{n}. +## +## The algorithm used is the Sieve of Eratosthenes. +## +## Note that if you need a specific number of primes you can use the +## fact that the distance from one prime to the next is, on average, +## proportional to the logarithm of the prime. Integrating, one finds +## that there are about @math{k} primes less than +## @tex +## $k \log (5 k)$. +## @end tex +## @ifnottex +## k*log(5*k). +## @end ifnottex +## @seealso{list_primes, isprime} +## @end deftypefn + +## Author: Paul Kienzle +## Author: Francesco Potortì +## Author: Dirk Laurie + +function x = primes (n) + + if (nargin != 1) + print_usage (); + endif + + if (! isscalar (n)) + error ("primes: N must be a scalar"); + endif + + if (n > 100000) + ## Optimization: 1/6 less memory, and much faster (asymptotically) + ## 100000 happens to be the cross-over point for Paul's machine; + ## below this the more direct code below is faster. At the limit + ## of memory in Paul's machine, this saves .7 seconds out of 7 for + ## n = 3e6. Hardly worthwhile, but Dirk reports better numbers. + lenm = floor ((n+1)/6); # length of the 6n-1 sieve + lenp = floor ((n-1)/6); # length of the 6n+1 sieve + sievem = true (1, lenm); # assume every number of form 6n-1 is prime + sievep = true (1, lenp); # assume every number of form 6n+1 is prime + + for i = 1:(sqrt(n)+1)/6 # check up to sqrt(n) + if (sievem(i)) # if i is prime, eliminate multiples of i + sievem(7*i-1:6*i-1:lenm) = false; + sievep(5*i-1:6*i-1:lenp) = false; + endif # if i is prime, eliminate multiples of i + if (sievep(i)) + sievep(7*i+1:6*i+1:lenp) = false; + sievem(5*i+1:6*i+1:lenm) = false; + endif + endfor + x = sort([2, 3, 6*find(sievem)-1, 6*find(sievep)+1]); + elseif (n > 352) # nothing magical about 352; must be >2 + len = floor ((n-1)/2); # length of the sieve + sieve = true (1, len); # assume every odd number is prime + for i = 1:(sqrt(n)-1)/2 # check up to sqrt(n) + if (sieve(i)) # if i is prime, eliminate multiples of i + sieve(3*i+1:2*i+1:len) = false; # do it + endif + endfor + x = [2, 1+2*find(sieve)]; # primes remaining after sieve + else + a = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, ... + 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, ... + 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, ... + 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, ... + 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, ... + 293, 307, 311, 313, 317, 331, 337, 347, 349]; + x = a(a <= n); + endif + +endfunction + +%!error primes (); +%!error primes (1, 2); + +%!assert (size (primes (350)), [1, 70]); +%!assert (size (primes (350)), [1, 70]); + +%!assert (primes (357)(end), 353);