X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?a=blobdiff_plain;f=octave_packages%2Fm%2Fstatistics%2Fbase%2Fquantile.m;fp=octave_packages%2Fm%2Fstatistics%2Fbase%2Fquantile.m;h=bb6353e7729ceb61d7c5e694a86eff00ebc43d14;hb=1c0469ada9531828709108a4882a751d2816994a;hp=0000000000000000000000000000000000000000;hpb=63de9f36673d49121015e3695f2c336ea92bc278;p=CreaPhase.git diff --git a/octave_packages/m/statistics/base/quantile.m b/octave_packages/m/statistics/base/quantile.m new file mode 100644 index 0000000..bb6353e --- /dev/null +++ b/octave_packages/m/statistics/base/quantile.m @@ -0,0 +1,415 @@ +## Copyright (C) 2008-2012 Ben Abbott and Jaroslav Hajek +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 3 of the License, or (at +## your option) any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, see +## . + +## -*- texinfo -*- +## @deftypefn {Function File} {@var{q} =} quantile (@var{x}, @var{p}) +## @deftypefnx {Function File} {@var{q} =} quantile (@var{x}, @var{p}, @var{dim}) +## @deftypefnx {Function File} {@var{q} =} quantile (@var{x}, @var{p}, @var{dim}, @var{method}) +## For a sample, @var{x}, calculate the quantiles, @var{q}, corresponding to +## the cumulative probability values in @var{p}. All non-numeric values (NaNs) +## of @var{x} are ignored. +## +## If @var{x} is a matrix, compute the quantiles for each column and +## return them in a matrix, such that the i-th row of @var{q} contains +## the @var{p}(i)th quantiles of each column of @var{x}. +## +## The optional argument @var{dim} determines the dimension along which +## the quantiles are calculated. If @var{dim} is omitted, and @var{x} is +## a vector or matrix, it defaults to 1 (column-wise quantiles). If +## @var{x} is an N-D array, @var{dim} defaults to the first non-singleton +## dimension. +## +## The methods available to calculate sample quantiles are the nine methods +## used by R (http://www.r-project.org/). The default value is METHOD = 5. +## +## Discontinuous sample quantile methods 1, 2, and 3 +## +## @enumerate 1 +## @item Method 1: Inverse of empirical distribution function. +## +## @item Method 2: Similar to method 1 but with averaging at discontinuities. +## +## @item Method 3: SAS definition: nearest even order statistic. +## @end enumerate +## +## Continuous sample quantile methods 4 through 9, where p(k) is the linear +## interpolation function respecting each methods' representative cdf. +## +## @enumerate 4 +## @item Method 4: p(k) = k / n. That is, linear interpolation of the +## empirical cdf. +## +## @item Method 5: p(k) = (k - 0.5) / n. That is a piecewise linear function +## where the knots are the values midway through the steps of the empirical +## cdf. +## +## @item Method 6: p(k) = k / (n + 1). +## +## @item Method 7: p(k) = (k - 1) / (n - 1). +## +## @item Method 8: p(k) = (k - 1/3) / (n + 1/3). The resulting quantile +## estimates are approximately median-unbiased regardless of the distribution +## of @var{x}. +## +## @item Method 9: p(k) = (k - 3/8) / (n + 1/4). The resulting quantile +## estimates are approximately unbiased for the expected order statistics if +## @var{x} is normally distributed. +## @end enumerate +## +## Hyndman and Fan (1996) recommend method 8. Maxima, S, and R +## (versions prior to 2.0.0) use 7 as their default. Minitab and SPSS +## use method 6. @sc{matlab} uses method 5. +## +## References: +## +## @itemize @bullet +## @item Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New +## S Language. Wadsworth & Brooks/Cole. +## +## @item Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in +## statistical packages, American Statistician, 50, 361--365. +## +## @item R: A Language and Environment for Statistical Computing; +## @url{http://cran.r-project.org/doc/manuals/fullrefman.pdf}. +## @end itemize +## +## Examples: +## @c Set example in small font to prevent overfull line +## +## @smallexample +## @group +## x = randi (1000, [10, 1]); # Create empirical data in range 1-1000 +## q = quantile (x, [0, 1]); # Return minimum, maximum of distribution +## q = quantile (x, [0.25 0.5 0.75]); # Return quartiles of distribution +## @end group +## @end smallexample +## @seealso{prctile} +## @end deftypefn + +## Author: Ben Abbott +## Description: Matlab style quantile function of a discrete/continuous distribution + +function q = quantile (x, p = [], dim = 1, method = 5) + + if (nargin < 1 || nargin > 4) + print_usage (); + endif + + if (! (isnumeric (x) || islogical (x))) + error ("quantile: X must be a numeric vector or matrix"); + endif + + if (isempty (p)) + p = [0.00 0.25, 0.50, 0.75, 1.00]; + endif + + if (! (isnumeric (p) && isvector (p))) + error ("quantile: P must be a numeric vector"); + endif + + if (!(isscalar (dim) && dim == fix (dim)) + || !(1 <= dim && dim <= ndims (x))) + error ("quantile: DIM must be an integer and a valid dimension"); + endif + + ## Set the permutation vector. + perm = 1:ndims(x); + perm(1) = dim; + perm(dim) = 1; + + ## Permute dim to the 1st index. + x = permute (x, perm); + + ## Save the size of the permuted x N-d array. + sx = size (x); + + ## Reshape to a 2-d array. + x = reshape (x, [sx(1), prod(sx(2:end))]); + + ## Calculate the quantiles. + q = __quantile__ (x, p, method); + + ## Return the shape to the original N-d array. + q = reshape (q, [numel(p), sx(2:end)]); + + ## Permute the 1st index back to dim. + q = ipermute (q, perm); + +endfunction + + +%!test +%! p = 0.5; +%! x = sort (rand (11)); +%! q = quantile (x, p); +%! assert (q, x(6,:)) +%! x = x.'; +%! q = quantile (x, p, 2); +%! assert (q, x(:,6)); + +%!test +%! p = [0.00, 0.25, 0.50, 0.75, 1.00]; +%! x = [1; 2; 3; 4]; +%! a = [1.0000 1.0000 2.0000 3.0000 4.0000 +%! 1.0000 1.5000 2.5000 3.5000 4.0000 +%! 1.0000 1.0000 2.0000 3.0000 4.0000 +%! 1.0000 1.0000 2.0000 3.0000 4.0000 +%! 1.0000 1.5000 2.5000 3.5000 4.0000 +%! 1.0000 1.2500 2.5000 3.7500 4.0000 +%! 1.0000 1.7500 2.5000 3.2500 4.0000 +%! 1.0000 1.4167 2.5000 3.5833 4.0000 +%! 1.0000 1.4375 2.5000 3.5625 4.0000]; +%! for m = (1:9) +%! q = quantile (x, p, 1, m).'; +%! assert (q, a(m,:), 0.0001) +%! endfor + +%!test +%! p = [0.00, 0.25, 0.50, 0.75, 1.00]; +%! x = [1; 2; 3; 4; 5]; +%! a = [1.0000 2.0000 3.0000 4.0000 5.0000 +%! 1.0000 2.0000 3.0000 4.0000 5.0000 +%! 1.0000 1.0000 2.0000 4.0000 5.0000 +%! 1.0000 1.2500 2.5000 3.7500 5.0000 +%! 1.0000 1.7500 3.0000 4.2500 5.0000 +%! 1.0000 1.5000 3.0000 4.5000 5.0000 +%! 1.0000 2.0000 3.0000 4.0000 5.0000 +%! 1.0000 1.6667 3.0000 4.3333 5.0000 +%! 1.0000 1.6875 3.0000 4.3125 5.0000]; +%! for m = (1:9) +%! q = quantile (x, p, 1, m).'; +%! assert (q, a(m,:), 0.0001) +%! endfor + +%!test +%! p = [0.00, 0.25, 0.50, 0.75, 1.00]; +%! x = [1; 2; 5; 9]; +%! a = [1.0000 1.0000 2.0000 5.0000 9.0000 +%! 1.0000 1.5000 3.5000 7.0000 9.0000 +%! 1.0000 1.0000 2.0000 5.0000 9.0000 +%! 1.0000 1.0000 2.0000 5.0000 9.0000 +%! 1.0000 1.5000 3.5000 7.0000 9.0000 +%! 1.0000 1.2500 3.5000 8.0000 9.0000 +%! 1.0000 1.7500 3.5000 6.0000 9.0000 +%! 1.0000 1.4167 3.5000 7.3333 9.0000 +%! 1.0000 1.4375 3.5000 7.2500 9.0000]; +%! for m = (1:9) +%! q = quantile (x, p, 1, m).'; +%! assert (q, a(m,:), 0.0001) +%! endfor + +%!test +%! p = [0.00, 0.25, 0.50, 0.75, 1.00]; +%! x = [1; 2; 5; 9; 11]; +%! a = [1.0000 2.0000 5.0000 9.0000 11.0000 +%! 1.0000 2.0000 5.0000 9.0000 11.0000 +%! 1.0000 1.0000 2.0000 9.0000 11.0000 +%! 1.0000 1.2500 3.5000 8.0000 11.0000 +%! 1.0000 1.7500 5.0000 9.5000 11.0000 +%! 1.0000 1.5000 5.0000 10.0000 11.0000 +%! 1.0000 2.0000 5.0000 9.0000 11.0000 +%! 1.0000 1.6667 5.0000 9.6667 11.0000 +%! 1.0000 1.6875 5.0000 9.6250 11.0000]; +%! for m = (1:9) +%! q = quantile (x, p, 1, m).'; +%! assert (q, a(m,:), 0.0001) +%! endfor + +%!test +%! p = [0.00, 0.25, 0.50, 0.75, 1.00]; +%! x = [16; 11; 15; 12; 15; 8; 11; 12; 6; 10]; +%! a = [6.0000 10.0000 11.0000 15.0000 16.0000 +%! 6.0000 10.0000 11.5000 15.0000 16.0000 +%! 6.0000 8.0000 11.0000 15.0000 16.0000 +%! 6.0000 9.0000 11.0000 13.5000 16.0000 +%! 6.0000 10.0000 11.5000 15.0000 16.0000 +%! 6.0000 9.5000 11.5000 15.0000 16.0000 +%! 6.0000 10.2500 11.5000 14.2500 16.0000 +%! 6.0000 9.8333 11.5000 15.0000 16.0000 +%! 6.0000 9.8750 11.5000 15.0000 16.0000]; +%! for m = (1:9) +%! q = quantile (x, p, 1, m).'; +%! assert (q, a(m,:), 0.0001) +%! endfor + +%!test +%! p = [0.00, 0.25, 0.50, 0.75, 1.00]; +%! x = [-0.58851; 0.40048; 0.49527; -2.551500; -0.52057; ... +%! -0.17841; 0.057322; -0.62523; 0.042906; 0.12337]; +%! a = [-2.551474 -0.588505 -0.178409 0.123366 0.495271 +%! -2.551474 -0.588505 -0.067751 0.123366 0.495271 +%! -2.551474 -0.625231 -0.178409 0.123366 0.495271 +%! -2.551474 -0.606868 -0.178409 0.090344 0.495271 +%! -2.551474 -0.588505 -0.067751 0.123366 0.495271 +%! -2.551474 -0.597687 -0.067751 0.192645 0.495271 +%! -2.551474 -0.571522 -0.067751 0.106855 0.495271 +%! -2.551474 -0.591566 -0.067751 0.146459 0.495271 +%! -2.551474 -0.590801 -0.067751 0.140686 0.495271]; +%! for m = (1:9) +%! q = quantile (x, p, 1, m).'; +%! assert (q, a(m,:), 0.0001) +%! endfor + +%!test +%! p = 0.5; +%! x = [0.112600, 0.114800, 0.052100, 0.236400, 0.139300 +%! 0.171800, 0.727300, 0.204100, 0.453100, 0.158500 +%! 0.279500, 0.797800, 0.329600, 0.556700, 0.730700 +%! 0.428800, 0.875300, 0.647700, 0.628700, 0.816500 +%! 0.933100, 0.931200, 0.963500, 0.779600, 0.846100]; +%! tol = 0.00001; +%! x(5,5) = NaN; +%! assert (quantile(x, p, 1), [0.27950, 0.79780, 0.32960, 0.55670, 0.44460], tol); +%! x(1,1) = NaN; +%! assert (quantile(x, p, 1), [0.35415, 0.79780, 0.32960, 0.55670, 0.44460], tol); +%! x(3,3) = NaN; +%! assert (quantile(x, p, 1), [0.35415, 0.79780, 0.42590, 0.55670, 0.44460], tol); + +%!test +%! sx = [2, 3, 4]; +%! x = rand (sx); +%! dim = 2; +%! p = 0.5; +%! yobs = quantile (x, p, dim); +%! yexp = median (x, dim); +%! assert (yobs, yexp); + +%% Test input validation +%!error quantile () +%!error quantile (1, 2, 3, 4, 5) +%!error quantile (['A'; 'B'], 10) +%!error quantile (1:10, [true, false]) +%!error quantile (1:10, ones (2,2)) +%!error quantile (1, 1, 1.5) +%!error quantile (1, 1, 0) +%!error quantile (1, 1, 3) +%!error quantile ((1:5)', 0.5, 1, 0) +%!error quantile ((1:5)', 0.5, 1, 10) + +## For the cumulative probability values in @var{p}, compute the +## quantiles, @var{q} (the inverse of the cdf), for the sample, @var{x}. +## +## The optional input, @var{method}, refers to nine methods available in R +## (http://www.r-project.org/). The default is @var{method} = 7. For more +## detail, see `help quantile'. +## @seealso{prctile, quantile, statistics} + +## Author: Ben Abbott +## Vectorized version: Jaroslav Hajek +## Description: Quantile function of empirical samples + +function inv = __quantile__ (x, p, method = 5) + + if (nargin < 2 || nargin > 3) + print_usage (); + endif + + if (isinteger (x) || islogical (x)) + x = double (x); + endif + + ## set shape of quantiles to column vector. + p = p(:); + + ## Save length and set shape of samples. + ## FIXME: does sort guarantee that NaN's come at the end? + x = sort (x); + m = sum (! isnan (x)); + [xr, xc] = size (x); + + ## Initialize output values. + inv = Inf (class (x)) * (-(p < 0) + (p > 1)); + inv = repmat (inv, 1, xc); + + ## Do the work. + if (any (k = find ((p >= 0) & (p <= 1)))) + n = length (k); + p = p(k); + ## Special case of 1 row. + if (xr == 1) + inv(k,:) = repmat (x, n, 1); + return; + endif + + ## The column-distribution indices. + pcd = kron (ones (n, 1), xr*(0:xc-1)); + mm = kron (ones (n, 1), m); + switch (method) + case {1, 2, 3} + switch (method) + case 1 + p = max (ceil (kron (p, m)), 1); + inv(k,:) = x(p + pcd); + + case 2 + p = kron (p, m); + p_lr = max (ceil (p), 1); + p_rl = min (floor (p + 1), mm); + inv(k,:) = (x(p_lr + pcd) + x(p_rl + pcd))/2; + + case 3 + ## Used by SAS, method PCTLDEF=2. + ## http://support.sas.com/onlinedoc/913/getDoc/en/statug.hlp/stdize_sect14.htm + t = max (kron (p, m), 1); + t = roundb (t); + inv(k,:) = x(t + pcd); + endswitch + + otherwise + switch (method) + case 4 + p = kron (p, m); + + case 5 + ## Used by Matlab. + p = kron (p, m) + 0.5; + + case 6 + ## Used by Minitab and SPSS. + p = kron (p, m+1); + + case 7 + ## Used by S and R. + p = kron (p, m-1) + 1; + + case 8 + ## Median unbiased. + p = kron (p, m+1/3) + 1/3; + + case 9 + ## Approximately unbiased respecting order statistics. + p = kron (p, m+0.25) + 0.375; + + otherwise + error ("quantile: Unknown METHOD, '%d'", method); + endswitch + + ## Duplicate single values. + imm1 = (mm == 1); + x(2,imm1) = x(1,imm1); + + ## Interval indices. + pi = max (min (floor (p), mm-1), 1); + pr = max (min (p - pi, 1), 0); + pi += pcd; + inv(k,:) = (1-pr) .* x(pi) + pr .* x(pi+1); + endswitch + endif + +endfunction +