X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?a=blobdiff_plain;f=src%2FgdcmFile.cxx;h=f79b64e7c8618eb8cc8f574c93ef064f13daf54e;hb=b0f62020f3423bf7663fdf856000dc245e417d9a;hp=9f0952357734feed925b307e5beda76556a0bd66;hpb=7a6f4850521b56e6b907cb8c7938471898613fa4;p=gdcm.git diff --git a/src/gdcmFile.cxx b/src/gdcmFile.cxx index 9f095235..f79b64e7 100644 --- a/src/gdcmFile.cxx +++ b/src/gdcmFile.cxx @@ -3,8 +3,8 @@ Program: gdcm Module: $RCSfile: gdcmFile.cxx,v $ Language: C++ - Date: $Date: 2005/07/23 01:27:57 $ - Version: $Revision: 1.258 $ + Date: $Date: 2005/07/30 18:17:08 $ + Version: $Revision: 1.264 $ Copyright (c) CREATIS (Centre de Recherche et d'Applications en Traitement de l'Image). All rights reserved. See Doc/License.txt or @@ -78,10 +78,10 @@ #include #include //sscanf #include // for atoi -#include // for pow namespace gdcm { + //----------------------------------------------------------------------------- // Constructor / Destructor @@ -785,8 +785,8 @@ int File::GetBitsStored() /** * \brief Retrieve the number of Bits Allocated - * (8, 12 -compacted ACR-NEMA files-, 16, ...) - * @return The encountered number of Bits Allocated, 0 by default. + * (8, 12 -compacted ACR-NEMA files-, 16, 24 -old RGB ACR-NEMA files-,) + * @return The encountered Number of Bits Allocated, 0 by default. * 0 means the file is NOT USABLE. The caller has to check it ! */ int File::GetBitsAllocated() @@ -920,8 +920,8 @@ std::string File::GetPixelType() } else if ( bitsAlloc == "24" ) { - // (in order no to be messed up - bitsAlloc = "8"; // by old RGB images) + // (in order no to be messed up by old RGB images) + bitsAlloc = "8"; } std::string sign = GetEntryValue(0x0028, 0x0103);//"Pixel Representation" @@ -1764,7 +1764,8 @@ File::File( std::string const &filename ) RLEInfo = new RLEFramesInfo; JPEGInfo = new JPEGFragmentsInfo; - Load( filename ); // gdcm::Document is first Loaded, then the 'File part' + SetFileName( filename ); + Load( ); // gdcm::Document is first Loaded, then the 'File part' } /** @@ -1786,178 +1787,6 @@ bool File::Load( std::string const &fileName ) } #endif -// ----------------------------------------------------------------------------------------- -// THERALYS Algorithm to determine the most similar basic orientation -// -// Transliterated from original Python code. -// Kept as close as possible to the original code -// in order to speed up any further modif of Python code :-( -// ------------------------------------------------------------------------------------------ - -/** - * \brief THERALYS' Algorithm to determine the most similar basic orientation - * (Axial, Coronal, Sagital) of the image - * \note Should be run on the first gdcm::File of a 'coherent' Serie - * @return orientation code - * @return orientation code - * # 0 : Not Applicable (neither 0020,0037 Image Orientation Patient - * # nor 0020,0032Image Position found ) - * # 1 : Axial - * # -1 : Axial invert - * # 2 : Coronal - * # -2 : Coronal invert - * # 3 : Sagital - * # -3 : Sagital invert - * # 4 : Heart Axial - * # -4 : Heart Axial invert - * # 5 : Heart Coronal - * # -5 : Heart Coronal invert - * # 6 : Heart Sagital - * # -6 : Heart Sagital invert - */ -float File::TypeOrientation( ) -{ - float *iop = new float[6]; - bool succ = GetImageOrientationPatient( iop ); - if ( !succ ) - { - delete iop; - return 0.; - } - - vector3D ori1; - vector3D ori2; - - ori1.x = iop[0]; ori1.y = iop[1]; ori1.z = iop[2]; - ori1.x = iop[3]; ori2.y = iop[4]; ori2.z = iop[5]; - - // two perpendicular vectors describe one plane - float dicPlane[6][2][3] = - { { {1, 0, 0 },{0, 1, 0 } }, // Axial - { {1, 0, 0 },{0, 0, -1 } }, // Coronal - { {0, 1, 0 },{0, 0, -1 } }, // Sagittal - { { 0.8, 0.5, 0.0 },{-0.1, 0.1 , -0.95 } }, // Axial - HEART - { { 0.8, 0.5, 0.0 },{-0.6674, 0.687, 0.1794} }, // Coronal - HEART - { {-0.1, 0.1, -0.95},{-0.6674, 0.687, 0.1794} } // Sagittal - HEART - }; - - vector3D refA; - vector3D refB; - int i = 0; - Res res; // [ , ] - res.first = 0; - res.second = 99999; - for (int numDicPlane=0; numDicPlane<6; numDicPlane++) - { - i = i + 1; - // refA=plane[0] - refA.x = dicPlane[numDicPlane][0][0]; - refA.y = dicPlane[numDicPlane][0][1]; - refA.z = dicPlane[numDicPlane][0][2]; - // refB=plane[1] - refB.x = dicPlane[numDicPlane][1][0]; - refB.y = dicPlane[numDicPlane][1][1]; - refB.z = dicPlane[numDicPlane][1][2]; - res=VerfCriterion( i, CalculLikelyhood2Vec(refA,refB,ori1,ori2), res ); - res=VerfCriterion( -i, CalculLikelyhood2Vec(refB,refA,ori1,ori2), res ); - } - delete iop; - return res.first; -/* -// i=0 -// res=[0,99999] ## [ , ] -// for plane in dicPlane: -// i=i+1 -// refA=plane[0] -// refB=plane[1] -// res=self.VerfCriterion( i , self.CalculLikelyhood2Vec(refA,refB,ori1,ori2) , res ) -// res=self.VerfCriterion( -i , self.CalculLikelyhood2Vec(refB,refA,ori1,ori2) , res ) -// return res[0] -*/ - -} - -Res File::VerfCriterion(int typeCriterion, float criterionNew, Res res) -{ - float type = res.first; - float criterion = res.second; - if (criterionNew < criterion) - { - res.first = criterionNew; - res.second = typeCriterion; - } -/* -// type = res[0] -// criterion = res[1] -// # if criterionNew<0.1 and criterionNew : - type : vector 3D (float) -// # - : - type : vector 3D (float) -// # - Description of the first plane -// # - : - type : vector 3D (float) -// # - : - type : vector 3D (float) -// # - Description of the second plane -// # ------------------------- Return : ------------------------------------ -// # float : 0 if the planes are perpendicular. While the difference of -// # the orientation between the planes are big more enlarge is -// # the criterion. -// # ------------------------- Other : ------------------------------------- -// # The calculus is based with vectors normalice - - vector3D ori3 = ProductVectorial(ori1,ori2); - vector3D refC = ProductVectorial(refA,refB); - float res = pow(refC.x-ori3.x, 2.) + - pow(refC.y-ori3.y, 2.) + - pow(refC.z-ori3.z, 2.); - -/* -// ori3=self.ProductVectorial(ori1,ori2) -// refC=self.ProductVectorial(refA,refB) -// res=math.pow(refC[0]-ori3[0],2) + math.pow(refC[1]-ori3[1],2) + math.pow(refC[2]-ori3[2],2) -// return math.sqrt(res) -*/ - return sqrt(res); -} - -vector3D File::ProductVectorial(vector3D vec1, vector3D vec2) -{ - -// # ------------------------- Purpose : ----------------------------------- -// # - Calculus of the poduct vectorial between two vectors 3D -// # ------------------------- Parameters : -------------------------------- -// # - : - type : vector 3D (float) -// # - : - type : vector 3D (float) -// # ------------------------- Return : ------------------------------------ -// # (vec) : - Vector 3D -// # ------------------------- Other : ------------------------------------- - - vector3D vec3; - vec3.x = vec1.y*vec2.z - vec1.z*vec2.y; - vec3.y = -( vec1.x*vec2.z - vec1.z*vec2.x); - vec3.z = vec1.x*vec2.y - vec1.y*vec2.x; -/* -// vec3=[0,0,0] -// vec3[0]=vec1[1]*vec2[2] - vec1[2]*vec2[1] -// vec3[1]=-( vec1[0]*vec2[2] - vec1[2]*vec2[0]) -// vec3[2]=vec1[0]*vec2[1] - vec1[1]*vec2[0] -*/ - return vec3; -} - //----------------------------------------------------------------------------- // Print