]> Creatis software - clitk.git/commitdiff
manage tree structures
authordsarrut <dsarrut>
Mon, 4 Oct 2010 08:06:16 +0000 (08:06 +0000)
committerdsarrut <dsarrut>
Mon, 4 Oct 2010 08:06:16 +0000 (08:06 +0000)
segmentation/tree.hh [new file with mode: 0644]

diff --git a/segmentation/tree.hh b/segmentation/tree.hh
new file mode 100644 (file)
index 0000000..fa47763
--- /dev/null
@@ -0,0 +1,2710 @@
+
+//     STL-like templated tree class.
+//
+// Copyright (C) 2001-2009 Kasper Peeters <kasper.peeters@aei.mpg.de>
+// Distributed under the GNU General Public License version 3,
+// (eventually to be changed to the Boost Software License).
+
+/** \mainpage tree.hh
+    \author   Kasper Peeters
+    \version  2.65
+    \date     03-Apr-2009
+    \see      http://www.aei.mpg.de/~peekas/tree/
+    \see      http://www.aei.mpg.de/~peekas/tree/ChangeLog
+
+   The tree.hh library for C++ provides an STL-like container class
+   for n-ary trees, templated over the data stored at the
+   nodes. Various types of iterators are provided (post-order,
+   pre-order, and others). Where possible the access methods are
+   compatible with the STL or alternative algorithms are
+   available. 
+*/
+
+
+#ifndef tree_hh_
+#define tree_hh_
+
+#include <cassert>
+#include <memory>
+#include <stdexcept>
+#include <iterator>
+#include <set>
+#include <queue>
+#include <algorithm>
+
+// HP-style construct/destroy have gone from the standard,
+// so here is a copy.
+
+namespace kp {
+
+template <class T1, class T2>
+void constructor(T1* p, T2& val) 
+       {
+       new ((void *) p) T1(val);
+       }
+
+template <class T1>
+void constructor(T1* p) 
+       {
+       new ((void *) p) T1;
+       }
+
+template <class T1>
+void destructor(T1* p)
+       {
+       p->~T1();
+       }
+
+}
+
+/// A node in the tree, combining links to other nodes as well as the actual data.
+template<class T>
+class tree_node_ { // size: 5*4=20 bytes (on 32 bit arch), can be reduced by 8.
+       public:
+               tree_node_<T> *parent;
+          tree_node_<T> *first_child, *last_child;
+               tree_node_<T> *prev_sibling, *next_sibling;
+               T data;
+}; // __attribute__((packed));
+
+template <class T, class tree_node_allocator = std::allocator<tree_node_<T> > >
+class tree {
+       protected:
+               typedef tree_node_<T> tree_node;
+       public:
+               /// Value of the data stored at a node.
+               typedef T value_type;
+
+               class iterator_base;
+               class pre_order_iterator;
+               class post_order_iterator;
+               class sibling_iterator;
+      class leaf_iterator;
+
+               tree();
+               tree(const T&);
+               tree(const iterator_base&);
+               tree(const tree<T, tree_node_allocator>&);
+               ~tree();
+               void operator=(const tree<T, tree_node_allocator>&);
+
+      /// Base class for iterators, only pointers stored, no traversal logic.
+#ifdef __SGI_STL_PORT
+               class iterator_base : public stlport::bidirectional_iterator<T, ptrdiff_t> {
+#else
+               class iterator_base {
+#endif
+                       public:
+                               typedef T                               value_type;
+                               typedef T*                              pointer;
+                               typedef T&                              reference;
+                               typedef size_t                          size_type;
+                               typedef ptrdiff_t                       difference_type;
+                               typedef std::bidirectional_iterator_tag iterator_category;
+
+                               iterator_base();
+                               iterator_base(tree_node *);
+
+                               T&             operator*() const;
+                               T*             operator->() const;
+
+            /// When called, the next increment/decrement skips children of this node.
+                               void         skip_children();
+                               void         skip_children(bool skip);
+                               /// Number of children of the node pointed to by the iterator.
+                               unsigned int number_of_children() const;
+
+                               sibling_iterator begin() const;
+                               sibling_iterator end() const;
+
+                               tree_node *node;
+                       protected:
+                               bool skip_current_children_;
+               };
+
+               /// Depth-first iterator, first accessing the node, then its children.
+               class pre_order_iterator : public iterator_base { 
+                       public:
+                               pre_order_iterator();
+                               pre_order_iterator(tree_node *);
+                               pre_order_iterator(const iterator_base&);
+                               pre_order_iterator(const sibling_iterator&);
+
+                               bool    operator==(const pre_order_iterator&) const;
+                               bool    operator!=(const pre_order_iterator&) const;
+                               pre_order_iterator&  operator++();
+                          pre_order_iterator&  operator--();
+                               pre_order_iterator   operator++(int);
+                               pre_order_iterator   operator--(int);
+                               pre_order_iterator&  operator+=(unsigned int);
+                               pre_order_iterator&  operator-=(unsigned int);
+               };
+
+               /// Depth-first iterator, first accessing the children, then the node itself.
+               class post_order_iterator : public iterator_base {
+                       public:
+                               post_order_iterator();
+                               post_order_iterator(tree_node *);
+                               post_order_iterator(const iterator_base&);
+                               post_order_iterator(const sibling_iterator&);
+
+                               bool    operator==(const post_order_iterator&) const;
+                               bool    operator!=(const post_order_iterator&) const;
+                               post_order_iterator&  operator++();
+                          post_order_iterator&  operator--();
+                               post_order_iterator   operator++(int);
+                               post_order_iterator   operator--(int);
+                               post_order_iterator&  operator+=(unsigned int);
+                               post_order_iterator&  operator-=(unsigned int);
+
+                               /// Set iterator to the first child as deep as possible down the tree.
+                               void descend_all();
+               };
+
+               /// Breadth-first iterator, using a queue
+               class breadth_first_queued_iterator : public iterator_base {
+                       public:
+                               breadth_first_queued_iterator();
+                               breadth_first_queued_iterator(tree_node *);
+                               breadth_first_queued_iterator(const iterator_base&);
+
+                               bool    operator==(const breadth_first_queued_iterator&) const;
+                               bool    operator!=(const breadth_first_queued_iterator&) const;
+                               breadth_first_queued_iterator&  operator++();
+                               breadth_first_queued_iterator   operator++(int);
+                               breadth_first_queued_iterator&  operator+=(unsigned int);
+
+                       private:
+                               std::queue<tree_node *> traversal_queue;
+               };
+
+               /// The default iterator types throughout the tree class.
+               typedef pre_order_iterator            iterator;
+               typedef breadth_first_queued_iterator breadth_first_iterator;
+
+               /// Iterator which traverses only the nodes at a given depth from the root.
+               class fixed_depth_iterator : public iterator_base {
+                       public:
+                               fixed_depth_iterator();
+                               fixed_depth_iterator(tree_node *);
+                               fixed_depth_iterator(const iterator_base&);
+                               fixed_depth_iterator(const sibling_iterator&);
+                               fixed_depth_iterator(const fixed_depth_iterator&);
+
+                               bool    operator==(const fixed_depth_iterator&) const;
+                               bool    operator!=(const fixed_depth_iterator&) const;
+                               fixed_depth_iterator&  operator++();
+                          fixed_depth_iterator&  operator--();
+                               fixed_depth_iterator   operator++(int);
+                               fixed_depth_iterator   operator--(int);
+                               fixed_depth_iterator&  operator+=(unsigned int);
+                               fixed_depth_iterator&  operator-=(unsigned int);
+
+                               tree_node *top_node;
+               };
+
+               /// Iterator which traverses only the nodes which are siblings of each other.
+               class sibling_iterator : public iterator_base {
+                       public:
+                               sibling_iterator();
+                               sibling_iterator(tree_node *);
+                               sibling_iterator(const sibling_iterator&);
+                               sibling_iterator(const iterator_base&);
+
+                               bool    operator==(const sibling_iterator&) const;
+                               bool    operator!=(const sibling_iterator&) const;
+                               sibling_iterator&  operator++();
+                               sibling_iterator&  operator--();
+                               sibling_iterator   operator++(int);
+                               sibling_iterator   operator--(int);
+                               sibling_iterator&  operator+=(unsigned int);
+                               sibling_iterator&  operator-=(unsigned int);
+
+                               tree_node *range_first() const;
+                               tree_node *range_last() const;
+                               tree_node *parent_;
+                       private:
+                               void set_parent_();
+               };
+
+      /// Iterator which traverses only the leaves.
+      class leaf_iterator : public iterator_base {
+         public:
+            leaf_iterator();
+            leaf_iterator(tree_node *, tree_node *top=0);
+            leaf_iterator(const sibling_iterator&);
+            leaf_iterator(const iterator_base&);
+
+            bool    operator==(const leaf_iterator&) const;
+            bool    operator!=(const leaf_iterator&) const;
+            leaf_iterator&  operator++();
+            leaf_iterator&  operator--();
+            leaf_iterator   operator++(int);
+            leaf_iterator   operator--(int);
+            leaf_iterator&  operator+=(unsigned int);
+            leaf_iterator&  operator-=(unsigned int);
+                       private:
+                               tree_node *top_node;
+      };
+
+               /// Return iterator to the beginning of the tree.
+               inline pre_order_iterator   begin() const;
+               /// Return iterator to the end of the tree.
+               inline pre_order_iterator   end() const;
+               /// Return post-order iterator to the beginning of the tree.
+               post_order_iterator  begin_post() const;
+               /// Return post-order end iterator of the tree.
+               post_order_iterator  end_post() const;
+               /// Return fixed-depth iterator to the first node at a given depth from the given iterator.
+               fixed_depth_iterator begin_fixed(const iterator_base&, unsigned int) const;
+               /// Return fixed-depth end iterator.
+               fixed_depth_iterator end_fixed(const iterator_base&, unsigned int) const;
+               /// Return breadth-first iterator to the first node at a given depth.
+               breadth_first_queued_iterator begin_breadth_first() const;
+               /// Return breadth-first end iterator.
+               breadth_first_queued_iterator end_breadth_first() const;
+               /// Return sibling iterator to the first child of given node.
+               sibling_iterator     begin(const iterator_base&) const;
+               /// Return sibling end iterator for children of given node.
+               sibling_iterator     end(const iterator_base&) const;
+      /// Return leaf iterator to the first leaf of the tree.
+      leaf_iterator   begin_leaf() const;
+      /// Return leaf end iterator for entire tree.
+      leaf_iterator   end_leaf() const;
+      /// Return leaf iterator to the first leaf of the subtree at the given node.
+      leaf_iterator   begin_leaf(const iterator_base& top) const;
+      /// Return leaf end iterator for the subtree at the given node.
+      leaf_iterator   end_leaf(const iterator_base& top) const;
+
+               /// Return iterator to the parent of a node.
+               template<typename       iter> static iter parent(iter);
+               /// Return iterator to the previous sibling of a node.
+               template<typename iter> iter previous_sibling(iter) const;
+               /// Return iterator to the next sibling of a node.
+               template<typename iter> iter next_sibling(iter) const;
+               /// Return iterator to the next node at a given depth.
+               template<typename iter> iter next_at_same_depth(iter) const;
+
+               /// Erase all nodes of the tree.
+               void     clear();
+               /// Erase element at position pointed to by iterator, return incremented iterator.
+               template<typename iter> iter erase(iter);
+               /// Erase all children of the node pointed to by iterator.
+               void     erase_children(const iterator_base&);
+
+               /// Insert empty node as last/first child of node pointed to by position.
+               template<typename iter> iter append_child(iter position); 
+               template<typename iter> iter prepend_child(iter position); 
+               /// Insert node as last/first child of node pointed to by position.
+               template<typename iter> iter append_child(iter position, const T& x);
+               template<typename iter> iter prepend_child(iter position, const T& x);
+               /// Append the node (plus its children) at other_position as last/first child of position.
+               template<typename iter> iter append_child(iter position, iter other_position);
+               template<typename iter> iter prepend_child(iter position, iter other_position);
+               /// Append the nodes in the from-to range (plus their children) as last/first children of position.
+               template<typename iter> iter append_children(iter position, sibling_iterator from, sibling_iterator to);
+               template<typename iter> iter prepend_children(iter position, sibling_iterator from, sibling_iterator to);
+
+               /// Short-hand to insert topmost node in otherwise empty tree.
+               pre_order_iterator set_head(const T& x);
+               /// Insert node as previous sibling of node pointed to by position.
+               template<typename iter> iter insert(iter position, const T& x);
+               /// Specialisation of previous member.
+               sibling_iterator insert(sibling_iterator position, const T& x);
+               /// Insert node (with children) pointed to by subtree as previous sibling of node pointed to by position.
+               template<typename iter> iter insert_subtree(iter position, const iterator_base& subtree);
+               /// Insert node as next sibling of node pointed to by position.
+               template<typename iter> iter insert_after(iter position, const T& x);
+               /// Insert node (with children) pointed to by subtree as next sibling of node pointed to by position.
+               template<typename iter> iter insert_subtree_after(iter position, const iterator_base& subtree);
+
+               /// Replace node at 'position' with other node (keeping same children); 'position' becomes invalid.
+               template<typename iter> iter replace(iter position, const T& x);
+               /// Replace node at 'position' with subtree starting at 'from' (do not erase subtree at 'from'); see above.
+               template<typename iter> iter replace(iter position, const iterator_base& from);
+               /// Replace string of siblings (plus their children) with copy of a new string (with children); see above
+               sibling_iterator replace(sibling_iterator orig_begin, sibling_iterator orig_end, 
+                                                                                sibling_iterator new_begin,  sibling_iterator new_end); 
+
+               /// Move all children of node at 'position' to be siblings, returns position.
+               template<typename iter> iter flatten(iter position);
+               /// Move nodes in range to be children of 'position'.
+               template<typename iter> iter reparent(iter position, sibling_iterator begin, sibling_iterator end);
+               /// Move all child nodes of 'from' to be children of 'position'.
+               template<typename iter> iter reparent(iter position, iter from);
+
+               /// Replace node with a new node, making the old node a child of the new node.
+               template<typename iter> iter wrap(iter position, const T& x);
+
+               /// Move 'source' node (plus its children) to become the next sibling of 'target'.
+               template<typename iter> iter move_after(iter target, iter source);
+               /// Move 'source' node (plus its children) to become the previous sibling of 'target'.
+      template<typename iter> iter move_before(iter target, iter source);
+      sibling_iterator move_before(sibling_iterator target, sibling_iterator source);
+               /// Move 'source' node (plus its children) to become the node at 'target' (erasing the node at 'target').
+               template<typename iter> iter move_ontop(iter target, iter source);
+
+               /// Merge with other tree, creating new branches and leaves only if they are not already present.
+               void     merge(sibling_iterator, sibling_iterator, sibling_iterator, sibling_iterator, 
+                                                       bool duplicate_leaves=false);
+               /// Sort (std::sort only moves values of nodes, this one moves children as well).
+               void     sort(sibling_iterator from, sibling_iterator to, bool deep=false);
+               template<class StrictWeakOrdering>
+               void     sort(sibling_iterator from, sibling_iterator to, StrictWeakOrdering comp, bool deep=false);
+               /// Compare two ranges of nodes (compares nodes as well as tree structure).
+               template<typename iter>
+               bool     equal(const iter& one, const iter& two, const iter& three) const;
+               template<typename iter, class BinaryPredicate>
+               bool     equal(const iter& one, const iter& two, const iter& three, BinaryPredicate) const;
+               template<typename iter>
+               bool     equal_subtree(const iter& one, const iter& two) const;
+               template<typename iter, class BinaryPredicate>
+               bool     equal_subtree(const iter& one, const iter& two, BinaryPredicate) const;
+               /// Extract a new tree formed by the range of siblings plus all their children.
+               tree     subtree(sibling_iterator from, sibling_iterator to) const;
+               void     subtree(tree&, sibling_iterator from, sibling_iterator to) const;
+               /// Exchange the node (plus subtree) with its sibling node (do nothing if no sibling present).
+               void     swap(sibling_iterator it);
+               /// Exchange two nodes (plus subtrees)
+          void     swap(iterator, iterator);
+               
+               /// Count the total number of nodes.
+               size_t   size() const;
+               /// Count the total number of nodes below the indicated node (plus one).
+               size_t   size(const iterator_base&) const;
+               /// Check if tree is empty.
+               bool     empty() const;
+               /// Compute the depth to the root or to a fixed other iterator.
+               static int depth(const iterator_base&);
+               static int depth(const iterator_base&, const iterator_base&);
+               /// Determine the maximal depth of the tree. An empty tree has max_depth=-1.
+               int      max_depth() const;
+               /// Determine the maximal depth of the tree with top node at the given position.
+               int      max_depth(const iterator_base&) const;
+               /// Count the number of children of node at position.
+               static unsigned int number_of_children(const iterator_base&);
+               /// Count the number of siblings (left and right) of node at iterator. Total nodes at this level is +1.
+               unsigned int number_of_siblings(const iterator_base&) const;
+               /// Determine whether node at position is in the subtrees with root in the range.
+               bool     is_in_subtree(const iterator_base& position, const iterator_base& begin, 
+                                                                         const iterator_base& end) const;
+               /// Determine whether the iterator is an 'end' iterator and thus not actually pointing to a node.
+               bool     is_valid(const iterator_base&) const;
+
+               /// Determine the index of a node in the range of siblings to which it belongs.
+               unsigned int index(sibling_iterator it) const;
+               /// Inverse of 'index': return the n-th child of the node at position.
+               static sibling_iterator child(const iterator_base& position, unsigned int);
+               /// Return iterator to the sibling indicated by index
+               sibling_iterator sibling(const iterator_base& position, unsigned int);                                  
+               
+               /// Comparator class for iterators (compares pointer values; why doesn't this work automatically?)
+               class iterator_base_less {
+                       public:
+                               bool operator()(const typename tree<T, tree_node_allocator>::iterator_base& one,
+                                                                        const typename tree<T, tree_node_allocator>::iterator_base& two) const
+                                       {
+                                       return one.node < two.node;
+                                       }
+               };
+               tree_node *head, *feet;    // head/feet are always dummy; if an iterator points to them it is invalid
+       private:
+               tree_node_allocator alloc_;
+               void head_initialise_();
+               void copy_(const tree<T, tree_node_allocator>& other);
+
+      /// Comparator class for two nodes of a tree (used for sorting and searching).
+               template<class StrictWeakOrdering>
+               class compare_nodes {
+                       public:
+                               compare_nodes(StrictWeakOrdering comp) : comp_(comp) {};
+                               
+                               bool operator()(const tree_node *a, const tree_node *b) 
+                                       {
+                                       return comp_(a->data, b->data);
+                                       }
+                       private:
+                               StrictWeakOrdering comp_;
+               };
+};
+
+//template <class T, class tree_node_allocator>
+//class iterator_base_less {
+//     public:
+//             bool operator()(const typename tree<T, tree_node_allocator>::iterator_base& one,
+//                                               const typename tree<T, tree_node_allocator>::iterator_base& two) const
+//                     {
+//                     txtout << "operatorclass<" << one.node < two.node << std::endl;
+//                     return one.node < two.node;
+//                     }
+//};
+
+// template <class T, class tree_node_allocator>
+// bool operator<(const typename tree<T, tree_node_allocator>::iterator& one,
+//                                     const typename tree<T, tree_node_allocator>::iterator& two)
+//     {
+//     txtout << "operator< " << one.node < two.node << std::endl;
+//     if(one.node < two.node) return true;
+//     return false;
+//     }
+// 
+// template <class T, class tree_node_allocator>
+// bool operator==(const typename tree<T, tree_node_allocator>::iterator& one,
+//                                     const typename tree<T, tree_node_allocator>::iterator& two)
+//     {
+//     txtout << "operator== " << one.node == two.node << std::endl;
+//     if(one.node == two.node) return true;
+//     return false;
+//     }
+// 
+// template <class T, class tree_node_allocator>
+// bool operator>(const typename tree<T, tree_node_allocator>::iterator_base& one,
+//                                     const typename tree<T, tree_node_allocator>::iterator_base& two)
+//     {
+//     txtout << "operator> " << one.node < two.node << std::endl;
+//     if(one.node > two.node) return true;
+//     return false;
+//     }
+
+
+
+// Tree
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::tree() 
+       {
+       head_initialise_();
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::tree(const T& x) 
+       {
+       head_initialise_();
+       set_head(x);
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::tree(const iterator_base& other)
+       {
+       head_initialise_();
+       set_head((*other));
+       replace(begin(), other);
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::~tree()
+       {
+       clear();
+       alloc_.deallocate(head,1);
+       alloc_.deallocate(feet,1);
+       }
+
+template <class T, class tree_node_allocator>
+void tree<T, tree_node_allocator>::head_initialise_() 
+   { 
+   head = alloc_.allocate(1,0); // MSVC does not have default second argument 
+       feet = alloc_.allocate(1,0);
+
+   head->parent=0;
+   head->first_child=0;
+   head->last_child=0;
+   head->prev_sibling=0; //head;
+   head->next_sibling=feet; //head;
+
+       feet->parent=0;
+       feet->first_child=0;
+       feet->last_child=0;
+       feet->prev_sibling=head;
+       feet->next_sibling=0;
+   }
+
+template <class T, class tree_node_allocator>
+void tree<T, tree_node_allocator>::operator=(const tree<T, tree_node_allocator>& other)
+       {
+       copy_(other);
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::tree(const tree<T, tree_node_allocator>& other)
+       {
+       head_initialise_();
+       copy_(other);
+       }
+
+template <class T, class tree_node_allocator>
+void tree<T, tree_node_allocator>::copy_(const tree<T, tree_node_allocator>& other) 
+       {
+       clear();
+       pre_order_iterator it=other.begin(), to=begin();
+       while(it!=other.end()) {
+               to=insert(to, (*it));
+               it.skip_children();
+               ++it;
+               }
+       to=begin();
+       it=other.begin();
+       while(it!=other.end()) {
+               to=replace(to, it);
+               to.skip_children();
+               it.skip_children();
+               ++to;
+               ++it;
+               }
+       }
+
+template <class T, class tree_node_allocator>
+void tree<T, tree_node_allocator>::clear()
+       {
+       if(head)
+               while(head->next_sibling!=feet)
+                       erase(pre_order_iterator(head->next_sibling));
+       }
+
+template<class T, class tree_node_allocator> 
+void tree<T, tree_node_allocator>::erase_children(const iterator_base& it)
+       {
+//     std::cout << "erase_children " << it.node << std::endl;
+       if(it.node==0) return;
+
+       tree_node *cur=it.node->first_child;
+       tree_node *prev=0;
+
+       while(cur!=0) {
+               prev=cur;
+               cur=cur->next_sibling;
+               erase_children(pre_order_iterator(prev));
+               kp::destructor(&prev->data);
+               alloc_.deallocate(prev,1);
+               }
+       it.node->first_child=0;
+       it.node->last_child=0;
+//     std::cout << "exit" << std::endl;
+       }
+
+template<class T, class tree_node_allocator> 
+template<class iter>
+iter tree<T, tree_node_allocator>::erase(iter it)
+       {
+       tree_node *cur=it.node;
+       assert(cur!=head);
+       iter ret=it;
+       ret.skip_children();
+       ++ret;
+       erase_children(it);
+       if(cur->prev_sibling==0) {
+               cur->parent->first_child=cur->next_sibling;
+               }
+       else {
+               cur->prev_sibling->next_sibling=cur->next_sibling;
+               }
+       if(cur->next_sibling==0) {
+               cur->parent->last_child=cur->prev_sibling;
+               }
+       else {
+               cur->next_sibling->prev_sibling=cur->prev_sibling;
+               }
+
+       kp::destructor(&cur->data);
+   alloc_.deallocate(cur,1);
+       return ret;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::pre_order_iterator tree<T, tree_node_allocator>::begin() const
+       {
+       return pre_order_iterator(head->next_sibling);
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::pre_order_iterator tree<T, tree_node_allocator>::end() const
+       {
+       return pre_order_iterator(feet);
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::breadth_first_queued_iterator tree<T, tree_node_allocator>::begin_breadth_first() const
+       {
+       return breadth_first_queued_iterator(head->next_sibling);
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::breadth_first_queued_iterator tree<T, tree_node_allocator>::end_breadth_first() const
+       {
+       return breadth_first_queued_iterator();
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::post_order_iterator tree<T, tree_node_allocator>::begin_post() const
+       {
+       tree_node *tmp=head->next_sibling;
+       if(tmp!=feet) {
+               while(tmp->first_child)
+                       tmp=tmp->first_child;
+               }
+       return post_order_iterator(tmp);
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::post_order_iterator tree<T, tree_node_allocator>::end_post() const
+       {
+       return post_order_iterator(feet);
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::fixed_depth_iterator tree<T, tree_node_allocator>::begin_fixed(const iterator_base& pos, unsigned int dp) const
+       {
+       typename tree<T, tree_node_allocator>::fixed_depth_iterator ret;
+       ret.top_node=pos.node;
+
+       tree_node *tmp=pos.node;
+       unsigned int curdepth=0;
+       while(curdepth<dp) { // go down one level
+               while(tmp->first_child==0) {
+                       if(tmp->next_sibling==0) {
+                               // try to walk up and then right again
+                               do {
+                                       if(tmp==ret.top_node)
+                                          throw std::range_error("tree: begin_fixed out of range");
+                                       tmp=tmp->parent;
+               if(tmp==0) 
+                                          throw std::range_error("tree: begin_fixed out of range");
+               --curdepth;
+                                  } while(tmp->next_sibling==0);
+                               }
+                       tmp=tmp->next_sibling;
+                       }
+               tmp=tmp->first_child;
+               ++curdepth;
+               }
+
+       ret.node=tmp;
+       return ret;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::fixed_depth_iterator tree<T, tree_node_allocator>::end_fixed(const iterator_base& pos, unsigned int dp) const
+       {
+       assert(1==0); // FIXME: not correct yet: use is_valid() as a temporary workaround 
+       tree_node *tmp=pos.node;
+       unsigned int curdepth=1;
+       while(curdepth<dp) { // go down one level
+               while(tmp->first_child==0) {
+                       tmp=tmp->next_sibling;
+                       if(tmp==0)
+                               throw std::range_error("tree: end_fixed out of range");
+                       }
+               tmp=tmp->first_child;
+               ++curdepth;
+               }
+       return tmp;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::begin(const iterator_base& pos) const
+       {
+       assert(pos.node!=0);
+       if(pos.node->first_child==0) {
+               return end(pos);
+               }
+       return pos.node->first_child;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::end(const iterator_base& pos) const
+       {
+       sibling_iterator ret(0);
+       ret.parent_=pos.node;
+       return ret;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::leaf_iterator tree<T, tree_node_allocator>::begin_leaf() const
+   {
+   tree_node *tmp=head->next_sibling;
+   if(tmp!=feet) {
+      while(tmp->first_child)
+         tmp=tmp->first_child;
+      }
+   return leaf_iterator(tmp);
+   }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::leaf_iterator tree<T, tree_node_allocator>::end_leaf() const
+   {
+   return leaf_iterator(feet);
+   }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::leaf_iterator tree<T, tree_node_allocator>::begin_leaf(const iterator_base& top) const
+   {
+       tree_node *tmp=top.node;
+       while(tmp->first_child)
+                tmp=tmp->first_child;
+   return leaf_iterator(tmp, top.node);
+   }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::leaf_iterator tree<T, tree_node_allocator>::end_leaf(const iterator_base& top) const
+   {
+   return leaf_iterator(top.node, top.node);
+   }
+
+template <class T, class tree_node_allocator>
+template <typename iter>
+iter tree<T, tree_node_allocator>::parent(iter position) 
+       {
+       assert(position.node!=0);
+       return iter(position.node->parent);
+       }
+
+template <class T, class tree_node_allocator>
+template <typename iter>
+iter tree<T, tree_node_allocator>::previous_sibling(iter position) const
+       {
+       assert(position.node!=0);
+       iter ret(position);
+       ret.node=position.node->prev_sibling;
+       return ret;
+       }
+
+template <class T, class tree_node_allocator>
+template <typename iter>
+iter tree<T, tree_node_allocator>::next_sibling(iter position) const
+       {
+       assert(position.node!=0);
+       iter ret(position);
+       ret.node=position.node->next_sibling;
+       return ret;
+       }
+
+template <class T, class tree_node_allocator>
+template <typename iter>
+iter tree<T, tree_node_allocator>::next_at_same_depth(iter position) const
+       {
+       // We make use of a temporary fixed_depth iterator to implement this.
+
+       typename tree<T, tree_node_allocator>::fixed_depth_iterator tmp(position.node);
+
+       ++tmp;
+       return iter(tmp);
+
+//     assert(position.node!=0);
+//     iter ret(position);
+//
+//     if(position.node->next_sibling) {
+//             ret.node=position.node->next_sibling;
+//             }
+//     else { 
+//             int relative_depth=0;
+//        upper:
+//             do {
+//                     ret.node=ret.node->parent;
+//                     if(ret.node==0) return ret;
+//                     --relative_depth;
+//                     } while(ret.node->next_sibling==0);
+//        lower:
+//             ret.node=ret.node->next_sibling;
+//             while(ret.node->first_child==0) {
+//                     if(ret.node->next_sibling==0)
+//                             goto upper;
+//                     ret.node=ret.node->next_sibling;
+//                     if(ret.node==0) return ret;
+//                     }
+//             while(relative_depth<0 && ret.node->first_child!=0) {
+//                     ret.node=ret.node->first_child;
+//                     ++relative_depth;
+//                     }
+//             if(relative_depth<0) {
+//                     if(ret.node->next_sibling==0) goto upper;
+//                     else                          goto lower;
+//                     }
+//             }
+//     return ret;
+       }
+
+template <class T, class tree_node_allocator>
+template <typename iter>
+iter tree<T, tree_node_allocator>::append_child(iter position)
+       {
+       assert(position.node!=head);
+       assert(position.node);
+
+       tree_node *tmp=alloc_.allocate(1,0);
+       kp::constructor(&tmp->data);
+       tmp->first_child=0;
+       tmp->last_child=0;
+
+       tmp->parent=position.node;
+       if(position.node->last_child!=0) {
+               position.node->last_child->next_sibling=tmp;
+               }
+       else {
+               position.node->first_child=tmp;
+               }
+       tmp->prev_sibling=position.node->last_child;
+       position.node->last_child=tmp;
+       tmp->next_sibling=0;
+       return tmp;
+       }
+
+template <class T, class tree_node_allocator>
+template <typename iter>
+iter tree<T, tree_node_allocator>::prepend_child(iter position)
+       {
+       assert(position.node!=head);
+       assert(position.node);
+
+       tree_node *tmp=alloc_.allocate(1,0);
+       kp::constructor(&tmp->data);
+       tmp->first_child=0;
+       tmp->last_child=0;
+
+       tmp->parent=position.node;
+       if(position.node->first_child!=0) {
+               position.node->first_child->prev_sibling=tmp;
+               }
+       else {
+               position.node->last_child=tmp;
+               }
+       tmp->next_sibling=position.node->first_child;
+       position.node->prev_child=tmp;
+       tmp->prev_sibling=0;
+       return tmp;
+       }
+
+template <class T, class tree_node_allocator>
+template <class iter>
+iter tree<T, tree_node_allocator>::append_child(iter position, const T& x)
+       {
+       // If your program fails here you probably used 'append_child' to add the top
+       // node to an empty tree. From version 1.45 the top element should be added
+       // using 'insert'. See the documentation for further information, and sorry about
+       // the API change.
+       assert(position.node!=head);
+       assert(position.node);
+
+       tree_node* tmp = alloc_.allocate(1,0);
+       kp::constructor(&tmp->data, x);
+       tmp->first_child=0;
+       tmp->last_child=0;
+
+       tmp->parent=position.node;
+       if(position.node->last_child!=0) {
+               position.node->last_child->next_sibling=tmp;
+               }
+       else {
+               position.node->first_child=tmp;
+               }
+       tmp->prev_sibling=position.node->last_child;
+       position.node->last_child=tmp;
+       tmp->next_sibling=0;
+       return tmp;
+       }
+
+template <class T, class tree_node_allocator>
+template <class iter>
+iter tree<T, tree_node_allocator>::prepend_child(iter position, const T& x)
+       {
+       assert(position.node!=head);
+       assert(position.node);
+
+       tree_node* tmp = alloc_.allocate(1,0);
+       kp::constructor(&tmp->data, x);
+       tmp->first_child=0;
+       tmp->last_child=0;
+
+       tmp->parent=position.node;
+       if(position.node->first_child!=0) {
+               position.node->first_child->prev_sibling=tmp;
+               }
+       else {
+               position.node->last_child=tmp;
+               }
+       tmp->next_sibling=position.node->first_child;
+       position.node->first_child=tmp;
+       tmp->prev_sibling=0;
+       return tmp;
+       }
+
+template <class T, class tree_node_allocator>
+template <class iter>
+iter tree<T, tree_node_allocator>::append_child(iter position, iter other)
+       {
+       assert(position.node!=head);
+       assert(position.node);
+
+       sibling_iterator aargh=append_child(position, value_type());
+       return replace(aargh, other);
+       }
+
+template <class T, class tree_node_allocator>
+template <class iter>
+iter tree<T, tree_node_allocator>::prepend_child(iter position, iter other)
+       {
+       assert(position.node!=head);
+       assert(position.node);
+
+       sibling_iterator aargh=prepend_child(position, value_type());
+       return replace(aargh, other);
+       }
+
+template <class T, class tree_node_allocator>
+template <class iter>
+iter tree<T, tree_node_allocator>::append_children(iter position, sibling_iterator from, sibling_iterator to)
+       {
+       assert(position.node!=head);
+       assert(position.node);
+
+       iter ret=from;
+
+       while(from!=to) {
+               insert_subtree(position.end(), from);
+               ++from;
+               }
+       return ret;
+       }
+
+template <class T, class tree_node_allocator>
+template <class iter>
+iter tree<T, tree_node_allocator>::prepend_children(iter position, sibling_iterator from, sibling_iterator to)
+       {
+       assert(position.node!=head);
+       assert(position.node);
+
+       iter ret=from;
+
+       while(from!=to) {
+               insert_subtree(position.begin(), from);
+               ++from;
+               }
+       return ret;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::pre_order_iterator tree<T, tree_node_allocator>::set_head(const T& x)
+       {
+       assert(head->next_sibling==feet);
+       return insert(iterator(feet), x);
+       }
+
+template <class T, class tree_node_allocator>
+template <class iter>
+iter tree<T, tree_node_allocator>::insert(iter position, const T& x)
+       {
+       if(position.node==0) {
+               position.node=feet; // Backward compatibility: when calling insert on a null node,
+                                   // insert before the feet.
+               }
+       tree_node* tmp = alloc_.allocate(1,0);
+       kp::constructor(&tmp->data, x);
+       tmp->first_child=0;
+       tmp->last_child=0;
+
+       tmp->parent=position.node->parent;
+       tmp->next_sibling=position.node;
+       tmp->prev_sibling=position.node->prev_sibling;
+       position.node->prev_sibling=tmp;
+
+       if(tmp->prev_sibling==0) {
+               if(tmp->parent) // when inserting nodes at the head, there is no parent
+                       tmp->parent->first_child=tmp;
+               }
+       else
+               tmp->prev_sibling->next_sibling=tmp;
+       return tmp;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::insert(sibling_iterator position, const T& x)
+       {
+       tree_node* tmp = alloc_.allocate(1,0);
+       kp::constructor(&tmp->data, x);
+       tmp->first_child=0;
+       tmp->last_child=0;
+
+       tmp->next_sibling=position.node;
+       if(position.node==0) { // iterator points to end of a subtree
+               tmp->parent=position.parent_;
+               tmp->prev_sibling=position.range_last();
+               tmp->parent->last_child=tmp;
+               }
+       else {
+               tmp->parent=position.node->parent;
+               tmp->prev_sibling=position.node->prev_sibling;
+               position.node->prev_sibling=tmp;
+               }
+
+       if(tmp->prev_sibling==0) {
+               if(tmp->parent) // when inserting nodes at the head, there is no parent
+                       tmp->parent->first_child=tmp;
+               }
+       else
+               tmp->prev_sibling->next_sibling=tmp;
+       return tmp;
+       }
+
+template <class T, class tree_node_allocator>
+template <class iter>
+iter tree<T, tree_node_allocator>::insert_after(iter position, const T& x)
+       {
+       tree_node* tmp = alloc_.allocate(1,0);
+       kp::constructor(&tmp->data, x);
+       tmp->first_child=0;
+       tmp->last_child=0;
+
+       tmp->parent=position.node->parent;
+       tmp->prev_sibling=position.node;
+       tmp->next_sibling=position.node->next_sibling;
+       position.node->next_sibling=tmp;
+
+       if(tmp->next_sibling==0) {
+               if(tmp->parent) // when inserting nodes at the head, there is no parent
+                       tmp->parent->last_child=tmp;
+               }
+       else {
+               tmp->next_sibling->prev_sibling=tmp;
+               }
+       return tmp;
+       }
+
+template <class T, class tree_node_allocator>
+template <class iter>
+iter tree<T, tree_node_allocator>::insert_subtree(iter position, const iterator_base& subtree)
+       {
+       // insert dummy
+       iter it=insert(position, value_type());
+       // replace dummy with subtree
+       return replace(it, subtree);
+       }
+
+template <class T, class tree_node_allocator>
+template <class iter>
+iter tree<T, tree_node_allocator>::insert_subtree_after(iter position, const iterator_base& subtree)
+       {
+       // insert dummy
+       iter it=insert_after(position, value_type());
+       // replace dummy with subtree
+       return replace(it, subtree);
+       }
+
+// template <class T, class tree_node_allocator>
+// template <class iter>
+// iter tree<T, tree_node_allocator>::insert_subtree(sibling_iterator position, iter subtree)
+//     {
+//     // insert dummy
+//     iter it(insert(position, value_type()));
+//     // replace dummy with subtree
+//     return replace(it, subtree);
+//     }
+
+template <class T, class tree_node_allocator>
+template <class iter>
+iter tree<T, tree_node_allocator>::replace(iter position, const T& x)
+       {
+       kp::destructor(&position.node->data);
+       kp::constructor(&position.node->data, x);
+       return position;
+       }
+
+template <class T, class tree_node_allocator>
+template <class iter>
+iter tree<T, tree_node_allocator>::replace(iter position, const iterator_base& from)
+       {
+       assert(position.node!=head);
+       tree_node *current_from=from.node;
+       tree_node *start_from=from.node;
+       tree_node *current_to  =position.node;
+
+       // replace the node at position with head of the replacement tree at from
+//     std::cout << "warning!" << position.node << std::endl;
+       erase_children(position);       
+//     std::cout << "no warning!" << std::endl;
+       tree_node* tmp = alloc_.allocate(1,0);
+       kp::constructor(&tmp->data, (*from));
+       tmp->first_child=0;
+       tmp->last_child=0;
+       if(current_to->prev_sibling==0) {
+               if(current_to->parent!=0)
+                       current_to->parent->first_child=tmp;
+               }
+       else {
+               current_to->prev_sibling->next_sibling=tmp;
+               }
+       tmp->prev_sibling=current_to->prev_sibling;
+       if(current_to->next_sibling==0) {
+               if(current_to->parent!=0)
+                       current_to->parent->last_child=tmp;
+               }
+       else {
+               current_to->next_sibling->prev_sibling=tmp;
+               }
+       tmp->next_sibling=current_to->next_sibling;
+       tmp->parent=current_to->parent;
+       kp::destructor(&current_to->data);
+       alloc_.deallocate(current_to,1);
+       current_to=tmp;
+       
+       // only at this stage can we fix 'last'
+       tree_node *last=from.node->next_sibling;
+
+       pre_order_iterator toit=tmp;
+       // copy all children
+       do {
+               assert(current_from!=0);
+               if(current_from->first_child != 0) {
+                       current_from=current_from->first_child;
+                       toit=append_child(toit, current_from->data);
+                       }
+               else {
+                       while(current_from->next_sibling==0 && current_from!=start_from) {
+                               current_from=current_from->parent;
+                               toit=parent(toit);
+                               assert(current_from!=0);
+                               }
+                       current_from=current_from->next_sibling;
+                       if(current_from!=last) {
+                               toit=append_child(parent(toit), current_from->data);
+                               }
+                       }
+               } while(current_from!=last);
+
+       return current_to;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::replace(
+       sibling_iterator orig_begin, 
+       sibling_iterator orig_end, 
+       sibling_iterator new_begin, 
+       sibling_iterator new_end)
+       {
+       tree_node *orig_first=orig_begin.node;
+       tree_node *new_first=new_begin.node;
+       tree_node *orig_last=orig_first;
+       while((++orig_begin)!=orig_end)
+               orig_last=orig_last->next_sibling;
+       tree_node *new_last=new_first;
+       while((++new_begin)!=new_end)
+               new_last=new_last->next_sibling;
+
+       // insert all siblings in new_first..new_last before orig_first
+       bool first=true;
+       pre_order_iterator ret;
+       while(1==1) {
+               pre_order_iterator tt=insert_subtree(pre_order_iterator(orig_first), pre_order_iterator(new_first));
+               if(first) {
+                       ret=tt;
+                       first=false;
+                       }
+               if(new_first==new_last)
+                       break;
+               new_first=new_first->next_sibling;
+               }
+
+       // erase old range of siblings
+       bool last=false;
+       tree_node *next=orig_first;
+       while(1==1) {
+               if(next==orig_last) 
+                       last=true;
+               next=next->next_sibling;
+               erase((pre_order_iterator)orig_first);
+               if(last) 
+                       break;
+               orig_first=next;
+               }
+       return ret;
+       }
+
+template <class T, class tree_node_allocator>
+template <typename iter>
+iter tree<T, tree_node_allocator>::flatten(iter position)
+       {
+       if(position.node->first_child==0)
+               return position;
+
+       tree_node *tmp=position.node->first_child;
+       while(tmp) {
+               tmp->parent=position.node->parent;
+               tmp=tmp->next_sibling;
+               } 
+       if(position.node->next_sibling) {
+               position.node->last_child->next_sibling=position.node->next_sibling;
+               position.node->next_sibling->prev_sibling=position.node->last_child;
+               }
+       else {
+               position.node->parent->last_child=position.node->last_child;
+               }
+       position.node->next_sibling=position.node->first_child;
+       position.node->next_sibling->prev_sibling=position.node;
+       position.node->first_child=0;
+       position.node->last_child=0;
+
+       return position;
+       }
+
+
+template <class T, class tree_node_allocator>
+template <typename iter>
+iter tree<T, tree_node_allocator>::reparent(iter position, sibling_iterator begin, sibling_iterator end)
+       {
+       tree_node *first=begin.node;
+       tree_node *last=first;
+
+       assert(first!=position.node);
+       
+       if(begin==end) return begin;
+       // determine last node
+       while((++begin)!=end) {
+               last=last->next_sibling;
+               }
+       // move subtree
+       if(first->prev_sibling==0) {
+               first->parent->first_child=last->next_sibling;
+               }
+       else {
+               first->prev_sibling->next_sibling=last->next_sibling;
+               }
+       if(last->next_sibling==0) {
+               last->parent->last_child=first->prev_sibling;
+               }
+       else {
+               last->next_sibling->prev_sibling=first->prev_sibling;
+               }
+       if(position.node->first_child==0) {
+               position.node->first_child=first;
+               position.node->last_child=last;
+               first->prev_sibling=0;
+               }
+       else {
+               position.node->last_child->next_sibling=first;
+               first->prev_sibling=position.node->last_child;
+               position.node->last_child=last;
+               }
+       last->next_sibling=0;
+
+       tree_node *pos=first;
+   for(;;) {
+               pos->parent=position.node;
+               if(pos==last) break;
+               pos=pos->next_sibling;
+               }
+
+       return first;
+       }
+
+template <class T, class tree_node_allocator>
+template <typename iter> iter tree<T, tree_node_allocator>::reparent(iter position, iter from)
+       {
+       if(from.node->first_child==0) return position;
+       return reparent(position, from.node->first_child, end(from));
+       }
+
+template <class T, class tree_node_allocator>
+template <typename iter> iter tree<T, tree_node_allocator>::wrap(iter position, const T& x)
+       {
+       assert(position.node!=0);
+       sibling_iterator fr=position, to=position;
+       ++to;
+       iter ret = insert(position, x);
+       reparent(ret, fr, to);
+       return ret;
+       }
+
+template <class T, class tree_node_allocator>
+template <typename iter> iter tree<T, tree_node_allocator>::move_after(iter target, iter source)
+   {
+   tree_node *dst=target.node;
+   tree_node *src=source.node;
+   assert(dst);
+   assert(src);
+
+   if(dst==src) return source;
+       if(dst->next_sibling)
+               if(dst->next_sibling==src) // already in the right spot
+                       return source;
+
+   // take src out of the tree
+   if(src->prev_sibling!=0) src->prev_sibling->next_sibling=src->next_sibling;
+   else                     src->parent->first_child=src->next_sibling;
+   if(src->next_sibling!=0) src->next_sibling->prev_sibling=src->prev_sibling;
+   else                     src->parent->last_child=src->prev_sibling;
+
+   // connect it to the new point
+   if(dst->next_sibling!=0) dst->next_sibling->prev_sibling=src;
+   else                     dst->parent->last_child=src;
+   src->next_sibling=dst->next_sibling;
+   dst->next_sibling=src;
+   src->prev_sibling=dst;
+   src->parent=dst->parent;
+   return src;
+   }
+
+template <class T, class tree_node_allocator>
+template <typename iter> iter tree<T, tree_node_allocator>::move_before(iter target, iter source)
+   {
+   tree_node *dst=target.node;
+   tree_node *src=source.node;
+   assert(dst);
+   assert(src);
+
+   if(dst==src) return source;
+       if(dst->prev_sibling)
+               if(dst->prev_sibling==src) // already in the right spot
+                       return source;
+
+   // take src out of the tree
+   if(src->prev_sibling!=0) src->prev_sibling->next_sibling=src->next_sibling;
+   else                     src->parent->first_child=src->next_sibling;
+   if(src->next_sibling!=0) src->next_sibling->prev_sibling=src->prev_sibling;
+   else                     src->parent->last_child=src->prev_sibling;
+
+   // connect it to the new point
+   if(dst->prev_sibling!=0) dst->prev_sibling->next_sibling=src;
+   else                     dst->parent->first_child=src;
+   src->prev_sibling=dst->prev_sibling;
+   dst->prev_sibling=src;
+   src->next_sibling=dst;
+   src->parent=dst->parent;
+   return src;
+   }
+
+// specialisation for sibling_iterators
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::move_before(sibling_iterator target, 
+                                                                                                                                                                                                                                         sibling_iterator source)
+       {
+       tree_node *dst=target.node;
+       tree_node *src=source.node;
+       tree_node *dst_prev_sibling;
+       if(dst==0) { // must then be an end iterator
+               dst_prev_sibling=target.parent_->last_child;
+               assert(dst_prev_sibling);
+               }
+       else dst_prev_sibling=dst->prev_sibling;
+       assert(src);
+
+       if(dst==src) return source;
+       if(dst_prev_sibling)
+               if(dst_prev_sibling==src) // already in the right spot
+                       return source;
+
+       // take src out of the tree
+       if(src->prev_sibling!=0) src->prev_sibling->next_sibling=src->next_sibling;
+       else                     src->parent->first_child=src->next_sibling;
+       if(src->next_sibling!=0) src->next_sibling->prev_sibling=src->prev_sibling;
+       else                     src->parent->last_child=src->prev_sibling;
+
+       // connect it to the new point
+       if(dst_prev_sibling!=0) dst_prev_sibling->next_sibling=src;
+       else                    target.parent_->first_child=src;
+       src->prev_sibling=dst_prev_sibling;
+       if(dst) {
+               dst->prev_sibling=src;
+               src->parent=dst->parent;
+               }
+       src->next_sibling=dst;
+       return src;
+       }
+
+template <class T, class tree_node_allocator>
+template <typename iter> iter tree<T, tree_node_allocator>::move_ontop(iter target, iter source)
+       {
+       tree_node *dst=target.node;
+       tree_node *src=source.node;
+       assert(dst);
+       assert(src);
+
+       if(dst==src) return source;
+
+       // remember connection points
+       tree_node *b_prev_sibling=dst->prev_sibling;
+       tree_node *b_next_sibling=dst->next_sibling;
+       tree_node *b_parent=dst->parent;
+
+       // remove target
+       erase(target);
+
+       // take src out of the tree
+       if(src->prev_sibling!=0) src->prev_sibling->next_sibling=src->next_sibling;
+       else                     src->parent->first_child=src->next_sibling;
+       if(src->next_sibling!=0) src->next_sibling->prev_sibling=src->prev_sibling;
+       else                     src->parent->last_child=src->prev_sibling;
+
+       // connect it to the new point
+       if(b_prev_sibling!=0) b_prev_sibling->next_sibling=src;
+       else                  b_parent->first_child=src;
+       if(b_next_sibling!=0) b_next_sibling->prev_sibling=src;
+       else                  b_parent->last_child=src;
+       src->prev_sibling=b_prev_sibling;
+       src->next_sibling=b_next_sibling;
+       src->parent=b_parent;
+       return src;
+       }
+
+template <class T, class tree_node_allocator>
+void tree<T, tree_node_allocator>::merge(sibling_iterator to1,   sibling_iterator to2,
+                                                                                                               sibling_iterator from1, sibling_iterator from2,
+                                                                                                               bool duplicate_leaves)
+       {
+       sibling_iterator fnd;
+       while(from1!=from2) {
+               if((fnd=std::find(to1, to2, (*from1))) != to2) { // element found
+                       if(from1.begin()==from1.end()) { // full depth reached
+                               if(duplicate_leaves)
+                                       append_child(parent(to1), (*from1));
+                               }
+                       else { // descend further
+                               merge(fnd.begin(), fnd.end(), from1.begin(), from1.end(), duplicate_leaves);
+                               }
+                       }
+               else { // element missing
+                       insert_subtree(to2, from1);
+                       }
+               ++from1;
+               }
+       }
+
+
+template <class T, class tree_node_allocator>
+void tree<T, tree_node_allocator>::sort(sibling_iterator from, sibling_iterator to, bool deep)
+       {
+       std::less<T> comp;
+       sort(from, to, comp, deep);
+       }
+
+template <class T, class tree_node_allocator>
+template <class StrictWeakOrdering>
+void tree<T, tree_node_allocator>::sort(sibling_iterator from, sibling_iterator to, 
+                                                                                                        StrictWeakOrdering comp, bool deep)
+       {
+       if(from==to) return;
+       // make list of sorted nodes
+       // CHECK: if multiset stores equivalent nodes in the order in which they
+       // are inserted, then this routine should be called 'stable_sort'.
+       std::multiset<tree_node *, compare_nodes<StrictWeakOrdering> > nodes(comp);
+       sibling_iterator it=from, it2=to;
+       while(it != to) {
+               nodes.insert(it.node);
+               ++it;
+               }
+       // reassemble
+       --it2;
+
+       // prev and next are the nodes before and after the sorted range
+       tree_node *prev=from.node->prev_sibling;
+       tree_node *next=it2.node->next_sibling;
+       typename std::multiset<tree_node *, compare_nodes<StrictWeakOrdering> >::iterator nit=nodes.begin(), eit=nodes.end();
+       if(prev==0) {
+               if((*nit)->parent!=0) // to catch "sorting the head" situations, when there is no parent
+                       (*nit)->parent->first_child=(*nit);
+               }
+       else prev->next_sibling=(*nit);
+
+       --eit;
+       while(nit!=eit) {
+               (*nit)->prev_sibling=prev;
+               if(prev)
+                       prev->next_sibling=(*nit);
+               prev=(*nit);
+               ++nit;
+               }
+       // prev now points to the last-but-one node in the sorted range
+       if(prev)
+               prev->next_sibling=(*eit);
+
+       // eit points to the last node in the sorted range.
+       (*eit)->next_sibling=next;
+   (*eit)->prev_sibling=prev; // missed in the loop above
+       if(next==0) {
+               if((*eit)->parent!=0) // to catch "sorting the head" situations, when there is no parent
+                       (*eit)->parent->last_child=(*eit);
+               }
+       else next->prev_sibling=(*eit);
+
+       if(deep) {      // sort the children of each node too
+               sibling_iterator bcs(*nodes.begin());
+               sibling_iterator ecs(*eit);
+               ++ecs;
+               while(bcs!=ecs) {
+                       sort(begin(bcs), end(bcs), comp, deep);
+                       ++bcs;
+                       }
+               }
+       }
+
+template <class T, class tree_node_allocator>
+template <typename iter>
+bool tree<T, tree_node_allocator>::equal(const iter& one_, const iter& two, const iter& three_) const
+       {
+       std::equal_to<T> comp;
+       return equal(one_, two, three_, comp);
+       }
+
+template <class T, class tree_node_allocator>
+template <typename iter>
+bool tree<T, tree_node_allocator>::equal_subtree(const iter& one_, const iter& two_) const
+       {
+       std::equal_to<T> comp;
+       return equal_subtree(one_, two_, comp);
+       }
+
+template <class T, class tree_node_allocator>
+template <typename iter, class BinaryPredicate>
+bool tree<T, tree_node_allocator>::equal(const iter& one_, const iter& two, const iter& three_, BinaryPredicate fun) const
+       {
+       pre_order_iterator one(one_), three(three_);
+
+//     if(one==two && is_valid(three) && three.number_of_children()!=0)
+//             return false;
+       while(one!=two && is_valid(three)) {
+               if(!fun(*one,*three))
+                       return false;
+               if(one.number_of_children()!=three.number_of_children()) 
+                       return false;
+               ++one;
+               ++three;
+               }
+       return true;
+       }
+
+template <class T, class tree_node_allocator>
+template <typename iter, class BinaryPredicate>
+bool tree<T, tree_node_allocator>::equal_subtree(const iter& one_, const iter& two_, BinaryPredicate fun) const
+       {
+       pre_order_iterator one(one_), two(two_);
+
+       if(!fun(*one,*two)) return false;
+       if(number_of_children(one)!=number_of_children(two)) return false;
+       return equal(begin(one),end(one),begin(two),fun);
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator> tree<T, tree_node_allocator>::subtree(sibling_iterator from, sibling_iterator to) const
+       {
+       tree tmp;
+       tmp.set_head(value_type());
+       tmp.replace(tmp.begin(), tmp.end(), from, to);
+       return tmp;
+       }
+
+template <class T, class tree_node_allocator>
+void tree<T, tree_node_allocator>::subtree(tree& tmp, sibling_iterator from, sibling_iterator to) const
+       {
+       tmp.set_head(value_type());
+       tmp.replace(tmp.begin(), tmp.end(), from, to);
+       }
+
+template <class T, class tree_node_allocator>
+size_t tree<T, tree_node_allocator>::size() const
+       {
+       size_t i=0;
+       pre_order_iterator it=begin(), eit=end();
+       while(it!=eit) {
+               ++i;
+               ++it;
+               }
+       return i;
+       }
+
+template <class T, class tree_node_allocator>
+size_t tree<T, tree_node_allocator>::size(const iterator_base& top) const
+       {
+       size_t i=0;
+       pre_order_iterator it=top, eit=top;
+       eit.skip_children();
+       ++eit;
+       while(it!=eit) {
+               ++i;
+               ++it;
+               }
+       return i;
+       }
+
+template <class T, class tree_node_allocator>
+bool tree<T, tree_node_allocator>::empty() const
+       {
+       pre_order_iterator it=begin(), eit=end();
+       return (it==eit);
+       }
+
+template <class T, class tree_node_allocator>
+int tree<T, tree_node_allocator>::depth(const iterator_base& it) 
+       {
+       tree_node* pos=it.node;
+       assert(pos!=0);
+       int ret=0;
+       while(pos->parent!=0) {
+               pos=pos->parent;
+               ++ret;
+               }
+       return ret;
+       }
+
+template <class T, class tree_node_allocator>
+int tree<T, tree_node_allocator>::depth(const iterator_base& it, const iterator_base& root) 
+       {
+       tree_node* pos=it.node;
+       assert(pos!=0);
+       int ret=0;
+       while(pos->parent!=0 && pos!=root.node) {
+               pos=pos->parent;
+               ++ret;
+               }
+       return ret;
+       }
+
+template <class T, class tree_node_allocator>
+int tree<T, tree_node_allocator>::max_depth() const
+       {
+       int maxd=-1;
+       for(tree_node *it = head->next_sibling; it!=feet; it=it->next_sibling)
+               maxd=std::max(maxd, max_depth(it));
+
+       return maxd;
+       }
+
+
+template <class T, class tree_node_allocator>
+int tree<T, tree_node_allocator>::max_depth(const iterator_base& pos) const
+       {
+       tree_node *tmp=pos.node;
+
+       if(tmp==0 || tmp==head || tmp==feet) return -1;
+
+       int curdepth=0, maxdepth=0;
+       while(true) { // try to walk the bottom of the tree
+               while(tmp->first_child==0) {
+                       if(tmp==pos.node) return maxdepth;
+                       if(tmp->next_sibling==0) {
+                               // try to walk up and then right again
+                               do {
+                                       tmp=tmp->parent;
+               if(tmp==0) return maxdepth;
+               --curdepth;
+                                  } while(tmp->next_sibling==0);
+                               }
+         if(tmp==pos.node) return maxdepth;
+                       tmp=tmp->next_sibling;
+                       }
+               tmp=tmp->first_child;
+               ++curdepth;
+               maxdepth=std::max(curdepth, maxdepth);
+               } 
+       }
+
+template <class T, class tree_node_allocator>
+unsigned int tree<T, tree_node_allocator>::number_of_children(const iterator_base& it) 
+       {
+       tree_node *pos=it.node->first_child;
+       if(pos==0) return 0;
+       
+       unsigned int ret=1;
+//       while(pos!=it.node->last_child) {
+//               ++ret;
+//               pos=pos->next_sibling;
+//               }
+       while((pos=pos->next_sibling))
+               ++ret;
+       return ret;
+       }
+
+template <class T, class tree_node_allocator>
+unsigned int tree<T, tree_node_allocator>::number_of_siblings(const iterator_base& it) const
+       {
+       tree_node *pos=it.node;
+       unsigned int ret=0;
+       // count forward
+       while(pos->next_sibling && 
+                       pos->next_sibling!=head &&
+                       pos->next_sibling!=feet) {
+               ++ret;
+               pos=pos->next_sibling;
+               }
+       // count backward
+       pos=it.node;
+       while(pos->prev_sibling && 
+                       pos->prev_sibling!=head &&
+                       pos->prev_sibling!=feet) {
+               ++ret;
+               pos=pos->prev_sibling;
+               }
+       
+       return ret;
+       }
+
+template <class T, class tree_node_allocator>
+void tree<T, tree_node_allocator>::swap(sibling_iterator it)
+       {
+       tree_node *nxt=it.node->next_sibling;
+       if(nxt) {
+               if(it.node->prev_sibling)
+                       it.node->prev_sibling->next_sibling=nxt;
+               else
+                       it.node->parent->first_child=nxt;
+               nxt->prev_sibling=it.node->prev_sibling;
+               tree_node *nxtnxt=nxt->next_sibling;
+               if(nxtnxt)
+                       nxtnxt->prev_sibling=it.node;
+               else
+                       it.node->parent->last_child=it.node;
+               nxt->next_sibling=it.node;
+               it.node->prev_sibling=nxt;
+               it.node->next_sibling=nxtnxt;
+               }
+       }
+
+template <class T, class tree_node_allocator>
+void tree<T, tree_node_allocator>::swap(iterator one, iterator two)
+       {
+       // if one and two are adjacent siblings, use the sibling swap
+       if(one.node->next_sibling==two.node) swap(one);
+       else if(two.node->next_sibling==one.node) swap(two);
+       else {
+               tree_node *nxt1=one.node->next_sibling;
+               tree_node *nxt2=two.node->next_sibling;
+               tree_node *pre1=one.node->prev_sibling;
+               tree_node *pre2=two.node->prev_sibling;
+               tree_node *par1=one.node->parent;
+               tree_node *par2=two.node->parent;
+
+               // reconnect
+               one.node->parent=par2;
+               one.node->next_sibling=nxt2;
+               if(nxt2) nxt2->prev_sibling=one.node;
+               else     par2->last_child=one.node;
+               one.node->prev_sibling=pre2;
+               if(pre2) pre2->next_sibling=one.node;
+               else     par2->first_child=one.node;    
+
+               two.node->parent=par1;
+               two.node->next_sibling=nxt1;
+               if(nxt1) nxt1->prev_sibling=two.node;
+               else     par1->last_child=two.node;
+               two.node->prev_sibling=pre1;
+               if(pre1) pre1->next_sibling=two.node;
+               else     par1->first_child=two.node;
+               }
+       }
+
+// template <class BinaryPredicate>
+// tree<T, tree_node_allocator>::iterator tree<T, tree_node_allocator>::find_subtree(
+//     sibling_iterator subfrom, sibling_iterator subto, iterator from, iterator to, 
+//     BinaryPredicate fun) const
+//     {
+//     assert(1==0); // this routine is not finished yet.
+//     while(from!=to) {
+//             if(fun(*subfrom, *from)) {
+//                     
+//                     }
+//             }
+//     return to;
+//     }
+
+template <class T, class tree_node_allocator>
+bool tree<T, tree_node_allocator>::is_in_subtree(const iterator_base& it, const iterator_base& begin, 
+                                                                                                                                const iterator_base& end) const
+       {
+       // FIXME: this should be optimised.
+       pre_order_iterator tmp=begin;
+       while(tmp!=end) {
+               if(tmp==it) return true;
+               ++tmp;
+               }
+       return false;
+       }
+
+template <class T, class tree_node_allocator>
+bool tree<T, tree_node_allocator>::is_valid(const iterator_base& it) const
+       {
+       if(it.node==0 || it.node==feet || it.node==head) return false;
+       else return true;
+       }
+
+template <class T, class tree_node_allocator>
+unsigned int tree<T, tree_node_allocator>::index(sibling_iterator it) const
+       {
+       unsigned int ind=0;
+       if(it.node->parent==0) {
+               while(it.node->prev_sibling!=head) {
+                       it.node=it.node->prev_sibling;
+                       ++ind;
+                       }
+               }
+       else {
+               while(it.node->prev_sibling!=0) {
+                       it.node=it.node->prev_sibling;
+                       ++ind;
+                       }
+               }
+       return ind;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::sibling(const iterator_base& it, unsigned int num)
+   {
+   tree_node *tmp;
+   if(it.node->parent==0) {
+      tmp=head->next_sibling;
+      while(num) {
+         tmp = tmp->next_sibling;
+         --num;
+         }
+      }
+   else {
+      tmp=it.node->parent->first_child;
+      while(num) {
+         assert(tmp!=0);
+         tmp = tmp->next_sibling;
+         --num;
+         }
+      }
+   return tmp;
+   }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::child(const iterator_base& it, unsigned int num) 
+       {
+       tree_node *tmp=it.node->first_child;
+       while(num--) {
+               assert(tmp!=0);
+               tmp=tmp->next_sibling;
+               }
+       return tmp;
+       }
+
+
+
+
+// Iterator base
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::iterator_base::iterator_base()
+       : node(0), skip_current_children_(false)
+       {
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::iterator_base::iterator_base(tree_node *tn)
+       : node(tn), skip_current_children_(false)
+       {
+       }
+
+template <class T, class tree_node_allocator>
+T& tree<T, tree_node_allocator>::iterator_base::operator*() const
+       {
+       return node->data;
+       }
+
+template <class T, class tree_node_allocator>
+T* tree<T, tree_node_allocator>::iterator_base::operator->() const
+       {
+       return &(node->data);
+       }
+
+template <class T, class tree_node_allocator>
+bool tree<T, tree_node_allocator>::post_order_iterator::operator!=(const post_order_iterator& other) const
+       {
+       if(other.node!=this->node) return true;
+       else return false;
+       }
+
+template <class T, class tree_node_allocator>
+bool tree<T, tree_node_allocator>::post_order_iterator::operator==(const post_order_iterator& other) const
+       {
+       if(other.node==this->node) return true;
+       else return false;
+       }
+
+template <class T, class tree_node_allocator>
+bool tree<T, tree_node_allocator>::pre_order_iterator::operator!=(const pre_order_iterator& other) const
+       {
+       if(other.node!=this->node) return true;
+       else return false;
+       }
+
+template <class T, class tree_node_allocator>
+bool tree<T, tree_node_allocator>::pre_order_iterator::operator==(const pre_order_iterator& other) const
+       {
+       if(other.node==this->node) return true;
+       else return false;
+       }
+
+template <class T, class tree_node_allocator>
+bool tree<T, tree_node_allocator>::sibling_iterator::operator!=(const sibling_iterator& other) const
+       {
+       if(other.node!=this->node) return true;
+       else return false;
+       }
+
+template <class T, class tree_node_allocator>
+bool tree<T, tree_node_allocator>::sibling_iterator::operator==(const sibling_iterator& other) const
+       {
+       if(other.node==this->node) return true;
+       else return false;
+       }
+
+template <class T, class tree_node_allocator>
+bool tree<T, tree_node_allocator>::leaf_iterator::operator!=(const leaf_iterator& other) const
+   {
+   if(other.node!=this->node) return true;
+   else return false;
+   }
+
+template <class T, class tree_node_allocator>
+bool tree<T, tree_node_allocator>::leaf_iterator::operator==(const leaf_iterator& other) const
+   {
+   if(other.node==this->node && other.top_node==this->top_node) return true;
+   else return false;
+   }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::iterator_base::begin() const
+       {
+       if(node->first_child==0) 
+               return end();
+
+       sibling_iterator ret(node->first_child);
+       ret.parent_=this->node;
+       return ret;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::iterator_base::end() const
+       {
+       sibling_iterator ret(0);
+       ret.parent_=node;
+       return ret;
+       }
+
+template <class T, class tree_node_allocator>
+void tree<T, tree_node_allocator>::iterator_base::skip_children()
+       {
+       skip_current_children_=true;
+       }
+
+template <class T, class tree_node_allocator>
+void tree<T, tree_node_allocator>::iterator_base::skip_children(bool skip)
+   {
+   skip_current_children_=skip;
+   }
+
+template <class T, class tree_node_allocator>
+unsigned int tree<T, tree_node_allocator>::iterator_base::number_of_children() const
+       {
+       tree_node *pos=node->first_child;
+       if(pos==0) return 0;
+       
+       unsigned int ret=1;
+       while(pos!=node->last_child) {
+               ++ret;
+               pos=pos->next_sibling;
+               }
+       return ret;
+       }
+
+
+
+// Pre-order iterator
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::pre_order_iterator::pre_order_iterator() 
+       : iterator_base(0)
+       {
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::pre_order_iterator::pre_order_iterator(tree_node *tn)
+       : iterator_base(tn)
+       {
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::pre_order_iterator::pre_order_iterator(const iterator_base &other)
+       : iterator_base(other.node)
+       {
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::pre_order_iterator::pre_order_iterator(const sibling_iterator& other)
+       : iterator_base(other.node)
+       {
+       if(this->node==0) {
+               if(other.range_last()!=0)
+                       this->node=other.range_last();
+               else 
+                       this->node=other.parent_;
+               this->skip_children();
+               ++(*this);
+               }
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::pre_order_iterator& tree<T, tree_node_allocator>::pre_order_iterator::operator++()
+       {
+       assert(this->node!=0);
+       if(!this->skip_current_children_ && this->node->first_child != 0) {
+               this->node=this->node->first_child;
+               }
+       else {
+               this->skip_current_children_=false;
+               while(this->node->next_sibling==0) {
+                       this->node=this->node->parent;
+                       if(this->node==0)
+                               return *this;
+                       }
+               this->node=this->node->next_sibling;
+               }
+       return *this;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::pre_order_iterator& tree<T, tree_node_allocator>::pre_order_iterator::operator--()
+       {
+       assert(this->node!=0);
+       if(this->node->prev_sibling) {
+               this->node=this->node->prev_sibling;
+               while(this->node->last_child)
+                       this->node=this->node->last_child;
+               }
+       else {
+               this->node=this->node->parent;
+               if(this->node==0)
+                       return *this;
+               }
+       return *this;
+}
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::pre_order_iterator tree<T, tree_node_allocator>::pre_order_iterator::operator++(int)
+       {
+       pre_order_iterator copy = *this;
+       ++(*this);
+       return copy;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::pre_order_iterator tree<T, tree_node_allocator>::pre_order_iterator::operator--(int)
+{
+  pre_order_iterator copy = *this;
+  --(*this);
+  return copy;
+}
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::pre_order_iterator& tree<T, tree_node_allocator>::pre_order_iterator::operator+=(unsigned int num)
+       {
+       while(num>0) {
+               ++(*this);
+               --num;
+               }
+       return (*this);
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::pre_order_iterator& tree<T, tree_node_allocator>::pre_order_iterator::operator-=(unsigned int num)
+       {
+       while(num>0) {
+               --(*this);
+               --num;
+               }
+       return (*this);
+       }
+
+
+
+// Post-order iterator
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::post_order_iterator::post_order_iterator() 
+       : iterator_base(0)
+       {
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::post_order_iterator::post_order_iterator(tree_node *tn)
+       : iterator_base(tn)
+       {
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::post_order_iterator::post_order_iterator(const iterator_base &other)
+       : iterator_base(other.node)
+       {
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::post_order_iterator::post_order_iterator(const sibling_iterator& other)
+       : iterator_base(other.node)
+       {
+       if(this->node==0) {
+               if(other.range_last()!=0)
+                       this->node=other.range_last();
+               else 
+                       this->node=other.parent_;
+               this->skip_children();
+               ++(*this);
+               }
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::post_order_iterator& tree<T, tree_node_allocator>::post_order_iterator::operator++()
+       {
+       assert(this->node!=0);
+       if(this->node->next_sibling==0) {
+               this->node=this->node->parent;
+               this->skip_current_children_=false;
+               }
+       else {
+               this->node=this->node->next_sibling;
+               if(this->skip_current_children_) {
+                       this->skip_current_children_=false;
+                       }
+               else {
+                       while(this->node->first_child)
+                               this->node=this->node->first_child;
+                       }
+               }
+       return *this;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::post_order_iterator& tree<T, tree_node_allocator>::post_order_iterator::operator--()
+       {
+       assert(this->node!=0);
+       if(this->skip_current_children_ || this->node->last_child==0) {
+               this->skip_current_children_=false;
+               while(this->node->prev_sibling==0)
+                       this->node=this->node->parent;
+               this->node=this->node->prev_sibling;
+               }
+       else {
+               this->node=this->node->last_child;
+               }
+       return *this;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::post_order_iterator tree<T, tree_node_allocator>::post_order_iterator::operator++(int)
+       {
+       post_order_iterator copy = *this;
+       ++(*this);
+       return copy;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::post_order_iterator tree<T, tree_node_allocator>::post_order_iterator::operator--(int)
+       {
+       post_order_iterator copy = *this;
+       --(*this);
+       return copy;
+       }
+
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::post_order_iterator& tree<T, tree_node_allocator>::post_order_iterator::operator+=(unsigned int num)
+       {
+       while(num>0) {
+               ++(*this);
+               --num;
+               }
+       return (*this);
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::post_order_iterator& tree<T, tree_node_allocator>::post_order_iterator::operator-=(unsigned int num)
+       {
+       while(num>0) {
+               --(*this);
+               --num;
+               }
+       return (*this);
+       }
+
+template <class T, class tree_node_allocator>
+void tree<T, tree_node_allocator>::post_order_iterator::descend_all()
+       {
+       assert(this->node!=0);
+       while(this->node->first_child)
+               this->node=this->node->first_child;
+       }
+
+
+// Breadth-first iterator
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::breadth_first_queued_iterator::breadth_first_queued_iterator()
+       : iterator_base()
+       {
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::breadth_first_queued_iterator::breadth_first_queued_iterator(tree_node *tn)
+       : iterator_base(tn)
+       {
+       traversal_queue.push(tn);
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::breadth_first_queued_iterator::breadth_first_queued_iterator(const iterator_base& other)
+       : iterator_base(other.node)
+       {
+       traversal_queue.push(other.node);
+       }
+
+template <class T, class tree_node_allocator>
+bool tree<T, tree_node_allocator>::breadth_first_queued_iterator::operator!=(const breadth_first_queued_iterator& other) const
+       {
+       if(other.node!=this->node) return true;
+       else return false;
+       }
+
+template <class T, class tree_node_allocator>
+bool tree<T, tree_node_allocator>::breadth_first_queued_iterator::operator==(const breadth_first_queued_iterator& other) const
+       {
+       if(other.node==this->node) return true;
+       else return false;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::breadth_first_queued_iterator& tree<T, tree_node_allocator>::breadth_first_queued_iterator::operator++()
+       {
+       assert(this->node!=0);
+
+       // Add child nodes and pop current node
+       sibling_iterator sib=this->begin();
+       while(sib!=this->end()) {
+               traversal_queue.push(sib.node);
+               ++sib;
+               }
+       traversal_queue.pop();
+       if(traversal_queue.size()>0)
+               this->node=traversal_queue.front();
+       else 
+               this->node=0;
+       return (*this);
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::breadth_first_queued_iterator tree<T, tree_node_allocator>::breadth_first_queued_iterator::operator++(int)
+       {
+       breadth_first_queued_iterator copy = *this;
+       ++(*this);
+       return copy;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::breadth_first_queued_iterator& tree<T, tree_node_allocator>::breadth_first_queued_iterator::operator+=(unsigned int num)
+       {
+       while(num>0) {
+               ++(*this);
+               --num;
+               }
+       return (*this);
+       }
+
+
+
+// Fixed depth iterator
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::fixed_depth_iterator::fixed_depth_iterator()
+       : iterator_base()
+       {
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::fixed_depth_iterator::fixed_depth_iterator(tree_node *tn)
+       : iterator_base(tn), top_node(0)
+       {
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::fixed_depth_iterator::fixed_depth_iterator(const iterator_base& other)
+       : iterator_base(other.node), top_node(0)
+       {
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::fixed_depth_iterator::fixed_depth_iterator(const sibling_iterator& other)
+       : iterator_base(other.node), top_node(0)
+       {
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::fixed_depth_iterator::fixed_depth_iterator(const fixed_depth_iterator& other)
+       : iterator_base(other.node), top_node(other.top_node)
+       {
+       }
+
+template <class T, class tree_node_allocator>
+bool tree<T, tree_node_allocator>::fixed_depth_iterator::operator==(const fixed_depth_iterator& other) const
+       {
+       if(other.node==this->node && other.top_node==top_node) return true;
+       else return false;
+       }
+
+template <class T, class tree_node_allocator>
+bool tree<T, tree_node_allocator>::fixed_depth_iterator::operator!=(const fixed_depth_iterator& other) const
+       {
+       if(other.node!=this->node || other.top_node!=top_node) return true;
+       else return false;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::fixed_depth_iterator& tree<T, tree_node_allocator>::fixed_depth_iterator::operator++()
+       {
+       assert(this->node!=0);
+
+       if(this->node->next_sibling) {
+               this->node=this->node->next_sibling;
+               }
+       else { 
+               int relative_depth=0;
+          upper:
+               do {
+                       if(this->node==this->top_node) {
+                               this->node=0; // FIXME: return a proper fixed_depth end iterator once implemented
+                               return *this;
+                               }
+                       this->node=this->node->parent;
+                       if(this->node==0) return *this;
+                       --relative_depth;
+                       } while(this->node->next_sibling==0);
+          lower:
+               this->node=this->node->next_sibling;
+               while(this->node->first_child==0) {
+                       if(this->node->next_sibling==0)
+                               goto upper;
+                       this->node=this->node->next_sibling;
+                       if(this->node==0) return *this;
+                       }
+               while(relative_depth<0 && this->node->first_child!=0) {
+                       this->node=this->node->first_child;
+                       ++relative_depth;
+                       }
+               if(relative_depth<0) {
+                       if(this->node->next_sibling==0) goto upper;
+                       else                          goto lower;
+                       }
+               }
+       return *this;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::fixed_depth_iterator& tree<T, tree_node_allocator>::fixed_depth_iterator::operator--()
+       {
+       assert(this->node!=0);
+
+       if(this->node->prev_sibling) {
+               this->node=this->node->prev_sibling;
+               }
+       else { 
+               int relative_depth=0;
+          upper:
+               do {
+                       if(this->node==this->top_node) {
+                               this->node=0;
+                               return *this;
+                               }
+                       this->node=this->node->parent;
+                       if(this->node==0) return *this;
+                       --relative_depth;
+                       } while(this->node->prev_sibling==0);
+          lower:
+               this->node=this->node->prev_sibling;
+               while(this->node->last_child==0) {
+                       if(this->node->prev_sibling==0)
+                               goto upper;
+                       this->node=this->node->prev_sibling;
+                       if(this->node==0) return *this;
+                       }
+               while(relative_depth<0 && this->node->last_child!=0) {
+                       this->node=this->node->last_child;
+                       ++relative_depth;
+                       }
+               if(relative_depth<0) {
+                       if(this->node->prev_sibling==0) goto upper;
+                       else                            goto lower;
+                       }
+               }
+       return *this;
+
+//
+//
+//     assert(this->node!=0);
+//     if(this->node->prev_sibling!=0) {
+//             this->node=this->node->prev_sibling;
+//             assert(this->node!=0);
+//             if(this->node->parent==0 && this->node->prev_sibling==0) // head element
+//                     this->node=0;
+//             }
+//     else {
+//             tree_node *par=this->node->parent;
+//             do {
+//                     par=par->prev_sibling;
+//                     if(par==0) { // FIXME: need to keep track of this!
+//                             this->node=0;
+//                             return *this;
+//                             }
+//                     } while(par->last_child==0);
+//             this->node=par->last_child;
+//             }
+//     return *this;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::fixed_depth_iterator tree<T, tree_node_allocator>::fixed_depth_iterator::operator++(int)
+       {
+       fixed_depth_iterator copy = *this;
+       ++(*this);
+       return copy;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::fixed_depth_iterator tree<T, tree_node_allocator>::fixed_depth_iterator::operator--(int)
+   {
+       fixed_depth_iterator copy = *this;
+       --(*this);
+       return copy;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::fixed_depth_iterator& tree<T, tree_node_allocator>::fixed_depth_iterator::operator-=(unsigned int num)
+       {
+       while(num>0) {
+               --(*this);
+               --(num);
+               }
+       return (*this);
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::fixed_depth_iterator& tree<T, tree_node_allocator>::fixed_depth_iterator::operator+=(unsigned int num)
+       {
+       while(num>0) {
+               ++(*this);
+               --(num);
+               }
+       return *this;
+       }
+
+
+// Sibling iterator
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::sibling_iterator::sibling_iterator() 
+       : iterator_base()
+       {
+       set_parent_();
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::sibling_iterator::sibling_iterator(tree_node *tn)
+       : iterator_base(tn)
+       {
+       set_parent_();
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::sibling_iterator::sibling_iterator(const iterator_base& other)
+       : iterator_base(other.node)
+       {
+       set_parent_();
+       }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::sibling_iterator::sibling_iterator(const sibling_iterator& other)
+       : iterator_base(other), parent_(other.parent_)
+       {
+       }
+
+template <class T, class tree_node_allocator>
+void tree<T, tree_node_allocator>::sibling_iterator::set_parent_()
+       {
+       parent_=0;
+       if(this->node==0) return;
+       if(this->node->parent!=0)
+               parent_=this->node->parent;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::sibling_iterator& tree<T, tree_node_allocator>::sibling_iterator::operator++()
+       {
+       if(this->node)
+               this->node=this->node->next_sibling;
+       return *this;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::sibling_iterator& tree<T, tree_node_allocator>::sibling_iterator::operator--()
+       {
+       if(this->node) this->node=this->node->prev_sibling;
+       else {
+               assert(parent_);
+               this->node=parent_->last_child;
+               }
+       return *this;
+}
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::sibling_iterator::operator++(int)
+       {
+       sibling_iterator copy = *this;
+       ++(*this);
+       return copy;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::sibling_iterator::operator--(int)
+       {
+       sibling_iterator copy = *this;
+       --(*this);
+       return copy;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::sibling_iterator& tree<T, tree_node_allocator>::sibling_iterator::operator+=(unsigned int num)
+       {
+       while(num>0) {
+               ++(*this);
+               --num;
+               }
+       return (*this);
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::sibling_iterator& tree<T, tree_node_allocator>::sibling_iterator::operator-=(unsigned int num)
+       {
+       while(num>0) {
+               --(*this);
+               --num;
+               }
+       return (*this);
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::tree_node *tree<T, tree_node_allocator>::sibling_iterator::range_first() const
+       {
+       tree_node *tmp=parent_->first_child;
+       return tmp;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::tree_node *tree<T, tree_node_allocator>::sibling_iterator::range_last() const
+       {
+       return parent_->last_child;
+       }
+
+// Leaf iterator
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::leaf_iterator::leaf_iterator() 
+   : iterator_base(0), top_node(0)
+   {
+   }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::leaf_iterator::leaf_iterator(tree_node *tn, tree_node *top)
+   : iterator_base(tn), top_node(top)
+   {
+   }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::leaf_iterator::leaf_iterator(const iterator_base &other)
+   : iterator_base(other.node), top_node(0)
+   {
+   }
+
+template <class T, class tree_node_allocator>
+tree<T, tree_node_allocator>::leaf_iterator::leaf_iterator(const sibling_iterator& other)
+   : iterator_base(other.node), top_node(0)
+   {
+   if(this->node==0) {
+      if(other.range_last()!=0)
+         this->node=other.range_last();
+      else 
+         this->node=other.parent_;
+      ++(*this);
+      }
+   }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::leaf_iterator& tree<T, tree_node_allocator>::leaf_iterator::operator++()
+   {
+       assert(this->node!=0);
+       if(this->node->first_child!=0) { // current node is no longer leaf (children got added)
+                while(this->node->first_child) 
+                         this->node=this->node->first_child;
+                }
+       else {
+                while(this->node->next_sibling==0) { 
+                         if (this->node->parent==0) return *this;
+                         this->node=this->node->parent;
+                         if (top_node != 0 && this->node==top_node) return *this;
+                         }
+                this->node=this->node->next_sibling;
+                while(this->node->first_child)
+                         this->node=this->node->first_child;
+                }
+       return *this;
+   }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::leaf_iterator& tree<T, tree_node_allocator>::leaf_iterator::operator--()
+   {
+       assert(this->node!=0);
+       while (this->node->prev_sibling==0) {
+               if (this->node->parent==0) return *this;
+               this->node=this->node->parent;
+               if (top_node !=0 && this->node==top_node) return *this; 
+               }
+       this->node=this->node->prev_sibling;
+       while(this->node->last_child)
+               this->node=this->node->last_child;
+       return *this;
+       }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::leaf_iterator tree<T, tree_node_allocator>::leaf_iterator::operator++(int)
+   {
+   leaf_iterator copy = *this;
+   ++(*this);
+   return copy;
+   }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::leaf_iterator tree<T, tree_node_allocator>::leaf_iterator::operator--(int)
+   {
+   leaf_iterator copy = *this;
+   --(*this);
+   return copy;
+   }
+
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::leaf_iterator& tree<T, tree_node_allocator>::leaf_iterator::operator+=(unsigned int num)
+   {
+   while(num>0) {
+      ++(*this);
+      --num;
+      }
+   return (*this);
+   }
+
+template <class T, class tree_node_allocator>
+typename tree<T, tree_node_allocator>::leaf_iterator& tree<T, tree_node_allocator>::leaf_iterator::operator-=(unsigned int num)
+   {
+   while(num>0) {
+      --(*this);
+      --num;
+      }
+   return (*this);
+   }
+
+#endif
+
+// Local variables:
+// default-tab-width: 3
+// End: