--- /dev/null
+#include "gdcmHeader.h"
+#include "gdcmFile.h"
+
+//Generated file:
+#include "gdcmDataImages.h"
+
+int TestAllReadCompareDicom(int argc, char* argv[])
+{
+ if ( argc > 1 )
+ {
+ std::cerr << " Usage: " << argv[0]
+ << " (no arguments needed)." << std::endl;
+ return 1;
+ }
+
+ std::cout << " Description (Test::TestAllReadCompareDicom): "
+ << std::endl;
+ std::cout << " For all images in gdcmData (and not blacklisted in "
+ "Test/CMakeLists.txt)"
+ << std::endl;
+ std::cout << " apply the following to each filename.xxx: "
+ << std::endl;
+ std::cout << " step 1: parse the image (as gdcmHeader) and call"
+ << " IsReadable(). "
+ << std::endl;
+ std::cout << " step 2: find in GDCM_DATA_ROOT/BaselineDicom/filename.dcm"
+ << std::endl
+ << " (with format DICOM V3, explicit Value"
+ << "Representation)"
+ << std::endl;
+ std::cout << " step 3a: when image NOT found on step 2, write "
+ << std::endl
+ << " GDCM_DATA_ROOT/BaselineDicom/filename.dcm"
+ << std::endl
+ << " (with format DICOM V3, explicit Value"
+ << "Representation)"
+ << std::endl;
+ std::cout << " step 3b: when image found on step 2, and when IsReadable()"
+ << std::endl
+ << " compare it (in memory with memcmp) with the"
+ << std::endl
+ << " image we are testing (the one of step 1). "
+ << std::endl << std::endl;
+
+ int i = 0;
+ while( gdcmDataImages[i] != 0 )
+ {
+ ////// Check for existence of reference baseline directory
+
+ std::string baseLineDir = GDCM_DATA_ROOT;
+ baseLineDir += "/BaselineDicom/";
+
+ FILE* testFILE = fopen( baseLineDir.c_str(), "r" );
+ if (! testFILE )
+ {
+ std::cerr << " The reference baseline directory " << std::endl
+ << " "
+ << baseLineDir << std::endl
+ << " couldn't be opened."
+ << std::endl;
+ return 1;
+ }
+ else
+ fclose( testFILE );
+
+ ////// Step 1 (see above description):
+
+ std::string filename = GDCM_DATA_ROOT;
+ filename += "/"; //doh!
+ filename += gdcmDataImages[i];
+
+ std::cout << " Testing: " << filename << std::endl;
+
+ gdcmFile* tested = new gdcmFile( filename.c_str(), false, true );
+ if( !tested->GetHeader()->IsReadable() )
+ {
+ std::cout << " Image not gdcm compatible:"
+ << filename << std::endl;
+ delete tested;
+ return 1;
+ }
+
+ ////// Step 2:
+
+ ////// Check for existence of reference baseline dicom file:
+
+ std::string referenceFileName = baseLineDir + gdcmDataImages[i++];
+ std::string::size_type slash_pos = referenceFileName.rfind( "." );
+ if ( slash_pos != std::string::npos )
+ {
+ referenceFileName.replace( slash_pos + 1, 3, "dcm" );
+ }
+
+ testFILE = fopen( referenceFileName.c_str(), "r" );
+ if (! testFILE )
+ {
+ ////// Step 3a:
+
+ int testedDataSize = tested->GetImageDataSize();
+ void* testedImageData = tested->GetImageData(); // Kludge
+ tested->WriteDcmExplVR( referenceFileName );
+ std::cerr << " Creating reference baseline file :" << std::endl
+ << " " << referenceFileName
+ << std::endl;
+ delete tested;
+ delete (char*)testedImageData;
+ continue;
+ }
+ else
+ fclose( testFILE );
+
+ ////// When reference file is not gdcm readable test is failed:
+
+ gdcmFile* reference = new gdcmFile( referenceFileName.c_str(),
+ false, true );
+ if( !reference->GetHeader()->IsReadable() )
+ {
+ std::cout << " Reference image " << std::endl
+ << " " << referenceFileName <<std::endl
+ << " is not gdcm compatible." << std::endl;
+ delete tested;
+ delete reference;
+ return 1;
+ }
+
+ ////// Step 3b:
+
+ int testedDataSize = tested->GetImageDataSize();
+ void* testedImageData = tested->GetImageData();
+
+ int referenceDataSize = reference->GetImageDataSize();
+ void* referenceImageData = reference->GetImageData();
+
+ if (testedDataSize != referenceDataSize)
+ {
+ std::cout << " Pixel areas lengths differ: "
+ << testedDataSize << " # " << referenceDataSize
+ << std::endl;
+ delete tested;
+ delete reference;
+ delete (char*)testedImageData;
+ delete (char*)referenceImageData;
+ return 1;
+ }
+
+ if (int res = memcmp(testedImageData, referenceImageData,
+ testedDataSize) != 0 )
+ {
+ std::cout << " Pixel differ (as expanded in memory)."
+ << std::endl;
+ delete tested;
+ delete reference;
+ delete (char*)testedImageData;
+ delete (char*)referenceImageData;
+ return 1;
+ }
+ std::cout << " Passed." << std::endl ;
+
+ //////////////// Clean up:
+ delete tested;
+ delete reference;
+ delete (char*)testedImageData;
+ delete (char*)referenceImageData;
+ }
+
+ return 0;
+}
#define JPEG_INTERNALS
#include "jinclude12.h"
#include "jpeglib12.h"
-#include "jdhuff12.h" /* Declarations shared with jdphuff.c */
+#include "jdhuff12.h" /* Declarations shared with jdphuff.c */
/*
#else
#if MAX_COMPS_IN_SCAN == 4
#define ASSIGN_STATE(dest,src) \
- ((dest).last_dc_val[0] = (src).last_dc_val[0], \
- (dest).last_dc_val[1] = (src).last_dc_val[1], \
- (dest).last_dc_val[2] = (src).last_dc_val[2], \
- (dest).last_dc_val[3] = (src).last_dc_val[3])
+ ((dest).last_dc_val[0] = (src).last_dc_val[0], \
+ (dest).last_dc_val[1] = (src).last_dc_val[1], \
+ (dest).last_dc_val[2] = (src).last_dc_val[2], \
+ (dest).last_dc_val[3] = (src).last_dc_val[3])
#endif
#endif
/* These fields are loaded into local variables at start of each MCU.
* In case of suspension, we exit WITHOUT updating them.
*/
- bitread_perm_state bitstate; /* Bit buffer at start of MCU */
- savable_state saved; /* Other state at start of MCU */
+ bitread_perm_state bitstate; /* Bit buffer at start of MCU */
+ savable_state saved; /* Other state at start of MCU */
/* These fields are NOT loaded into local working state. */
- unsigned int restarts_to_go; /* MCUs left in this restart interval */
+ unsigned int restarts_to_go; /* MCUs left in this restart interval */
/* Pointers to derived tables (these workspaces have image lifespan) */
d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
/* Compute derived values for Huffman tables */
/* We may do this more than once for a table, but it's not expensive */
jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
- & entropy->dc_derived_tbls[dctbl]);
+ & entropy->dc_derived_tbls[dctbl]);
jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
- & entropy->ac_derived_tbls[actbl]);
+ & entropy->ac_derived_tbls[actbl]);
/* Initialize DC predictions to 0 */
entropy->saved.last_dc_val[ci] = 0;
}
GLOBAL(void)
jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
- d_derived_tbl ** pdtbl)
+ d_derived_tbl ** pdtbl)
{
JHUFF_TBL *htbl;
d_derived_tbl *dtbl;
if (*pdtbl == NULL)
*pdtbl = (d_derived_tbl *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(d_derived_tbl));
+ SIZEOF(d_derived_tbl));
dtbl = *pdtbl;
- dtbl->pub = htbl; /* fill in back link */
+ dtbl->pub = htbl; /* fill in back link */
/* Figure C.1: make table of Huffman code length for each symbol */
p += htbl->bits[l];
dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
} else {
- dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
+ dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
}
}
dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
/* Generate left-justified code followed by all possible bit sequences */
lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
- dtbl->look_nbits[lookbits] = l;
- dtbl->look_sym[lookbits] = htbl->huffval[p];
- lookbits++;
+ dtbl->look_nbits[lookbits] = l;
+ dtbl->look_sym[lookbits] = htbl->huffval[p];
+ lookbits++;
}
}
}
int sym = htbl->huffval[i];
//printf ("htbl->huffval[%d]=%d\n",i,htbl->huffval[i]);
if (sym < 0 || sym > 15) {
- printf("JERR_BAD_HUFF_TABLE sym %d (>15)\n",sym);
- //ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+ //printf("JERR_BAD_HUFF_TABLE sym %d (>15)\n",sym);
+ //ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
// Sorry for the patch :
// Now, we can read Philips MRI Images
htbl->huffval[i]=15;
*/
#ifdef SLOW_SHIFT_32
-#define MIN_GET_BITS 15 /* minimum allowable value */
+#define MIN_GET_BITS 15 /* minimum allowable value */
#else
#define MIN_GET_BITS (BIT_BUF_SIZE-7)
#endif
GLOBAL(boolean)
jpeg_fill_bit_buffer (bitread_working_state * state,
- register bit_buf_type get_buffer, register int bits_left,
- int nbits)
+ register bit_buf_type get_buffer,
+ register int bits_left,
+ int nbits)
/* Load up the bit buffer to a depth of at least nbits */
{
/* Copy heavily used state fields into locals (hopefully registers) */
/* (It is assumed that no request will be for more than that many bits.) */
/* We fail to do so only if we hit a marker or are forced to suspend. */
- if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
+ if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
while (bits_left < MIN_GET_BITS) {
register int c;
/* Attempt to read a byte */
if (bytes_in_buffer == 0) {
- if (! (*cinfo->src->fill_input_buffer) (cinfo))
- return FALSE;
- next_input_byte = cinfo->src->next_input_byte;
- bytes_in_buffer = cinfo->src->bytes_in_buffer;
+ if (! (*cinfo->src->fill_input_buffer) (cinfo))
+ return FALSE;
+ next_input_byte = cinfo->src->next_input_byte;
+ bytes_in_buffer = cinfo->src->bytes_in_buffer;
}
bytes_in_buffer--;
c = GETJOCTET(*next_input_byte++);
/* If it's 0xFF, check and discard stuffed zero byte */
if (c == 0xFF) {
- /* Loop here to discard any padding FF's on terminating marker,
- * so that we can save a valid unread_marker value. NOTE: we will
- * accept multiple FF's followed by a 0 as meaning a single FF data
- * byte. This data pattern is not valid according to the standard.
- */
- do {
- if (bytes_in_buffer == 0) {
- if (! (*cinfo->src->fill_input_buffer) (cinfo))
- return FALSE;
- next_input_byte = cinfo->src->next_input_byte;
- bytes_in_buffer = cinfo->src->bytes_in_buffer;
- }
- bytes_in_buffer--;
- c = GETJOCTET(*next_input_byte++);
- } while (c == 0xFF);
-
- if (c == 0) {
- /* Found FF/00, which represents an FF data byte */
- c = 0xFF;
- } else {
- /* Oops, it's actually a marker indicating end of compressed data.
- * Save the marker code for later use.
- * Fine point: it might appear that we should save the marker into
- * bitread working state, not straight into permanent state. But
- * once we have hit a marker, we cannot need to suspend within the
- * current MCU, because we will read no more bytes from the data
- * source. So it is OK to update permanent state right away.
- */
- cinfo->unread_marker = c;
- /* See if we need to insert some fake zero bits. */
- goto no_more_bytes;
- }
+ /* Loop here to discard any padding FF's on terminating marker,
+ * so that we can save a valid unread_marker value. NOTE: we will
+ * accept multiple FF's followed by a 0 as meaning a single FF data
+ * byte. This data pattern is not valid according to the standard.
+ */
+ do {
+ if (bytes_in_buffer == 0) {
+ if (! (*cinfo->src->fill_input_buffer) (cinfo))
+ return FALSE;
+ next_input_byte = cinfo->src->next_input_byte;
+ bytes_in_buffer = cinfo->src->bytes_in_buffer;
+ }
+ bytes_in_buffer--;
+ c = GETJOCTET(*next_input_byte++);
+ } while (c == 0xFF);
+
+ if (c == 0) {
+ /* Found FF/00, which represents an FF data byte */
+ c = 0xFF;
+ } else {
+ /* Oops, it's actually a marker indicating end of compressed data.
+ * Save the marker code for later use.
+ * Fine point: it might appear that we should save the marker into
+ * bitread working state, not straight into permanent state. But
+ * once we have hit a marker, we cannot need to suspend within the
+ * current MCU, because we will read no more bytes from the data
+ * source. So it is OK to update permanent state right away.
+ */
+ cinfo->unread_marker = c;
+ /* See if we need to insert some fake zero bits. */
+ goto no_more_bytes;
+ }
}
/* OK, load c into get_buffer */
* appears per data segment.
*/
if (! cinfo->entropy->insufficient_data) {
- WARNMS(cinfo, JWRN_HIT_MARKER);
- cinfo->entropy->insufficient_data = TRUE;
+ WARNMS(cinfo, JWRN_HIT_MARKER);
+ cinfo->entropy->insufficient_data = TRUE;
}
/* Fill the buffer with zero bits */
get_buffer <<= MIN_GET_BITS - bits_left;
GLOBAL(int)
jpeg_huff_decode (bitread_working_state * state,
- register bit_buf_type get_buffer, register int bits_left,
- d_derived_tbl * htbl, int min_bits)
+ register bit_buf_type get_buffer, register int bits_left,
+ d_derived_tbl * htbl, int min_bits)
{
register int l = min_bits;
register INT32 code;
if (l > 16) {
WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
- return 0; /* fake a zero as the safest result */
+ return 0; /* fake a zero as the safest result */
}
return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! process_restart(cinfo))
- return FALSE;
+ return FALSE;
}
/* If we've run out of data, just leave the MCU set to zeroes.
/* Section F.2.2.1: decode the DC coefficient difference */
HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
}
if (entropy->dc_needed[blkn]) {
- /* Convert DC difference to actual value, update last_dc_val */
- int ci = cinfo->MCU_membership[blkn];
- s += state.last_dc_val[ci];
- state.last_dc_val[ci] = s;
- /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
- (*block)[0] = (JCOEF) s;
+ /* Convert DC difference to actual value, update last_dc_val */
+ int ci = cinfo->MCU_membership[blkn];
+ s += state.last_dc_val[ci];
+ state.last_dc_val[ci] = s;
+ /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
+ (*block)[0] = (JCOEF) s;
}
if (entropy->ac_needed[blkn]) {
- /* Section F.2.2.2: decode the AC coefficients */
- /* Since zeroes are skipped, output area must be cleared beforehand */
- for (k = 1; k < DCTSIZE2; k++) {
- HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
+ /* Section F.2.2.2: decode the AC coefficients */
+ /* Since zeroes are skipped, output area must be cleared beforehand */
+ for (k = 1; k < DCTSIZE2; k++) {
+ HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
- r = s >> 4;
- s &= 15;
+ r = s >> 4;
+ s &= 15;
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- /* Output coefficient in natural (dezigzagged) order.
- * Note: the extra entries in jpeg_natural_order[] will save us
- * if k >= DCTSIZE2, which could happen if the data is corrupted.
- */
- (*block)[jpeg_natural_order[k]] = (JCOEF) s;
- } else {
- if (r != 15)
- break;
- k += 15;
- }
- }
-
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ /* Output coefficient in natural (dezigzagged) order.
+ * Note: the extra entries in jpeg_natural_order[] will save us
+ * if k >= DCTSIZE2, which could happen if the data is corrupted.
+ */
+ (*block)[jpeg_natural_order[k]] = (JCOEF) s;
+ } else {
+ if (r != 15)
+ break;
+ k += 15;
+ }
+ }
} else {
- /* Section F.2.2.2: decode the AC coefficients */
- /* In this path we just discard the values */
- for (k = 1; k < DCTSIZE2; k++) {
- HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
+ /* Section F.2.2.2: decode the AC coefficients */
+ /* In this path we just discard the values */
+ for (k = 1; k < DCTSIZE2; k++) {
+ HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
- r = s >> 4;
- s &= 15;
+ r = s >> 4;
+ s &= 15;
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- DROP_BITS(s);
- } else {
- if (r != 15)
- break;
- k += 15;
- }
- }
-
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ DROP_BITS(s);
+ } else {
+ if (r != 15)
+ break;
+ k += 15;
+ }
+ }
}
}
entropy = (huff_entropy_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(huff_entropy_decoder));
+ SIZEOF(huff_entropy_decoder));
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
entropy->pub.start_pass = start_pass_huff_decoder;
entropy->pub.decode_mcu = decode_mcu;