Program: gdcm
Module: $RCSfile: gdcmFile.cxx,v $
Language: C++
- Date: $Date: 2005/07/20 14:49:41 $
- Version: $Revision: 1.254 $
+ Date: $Date: 2005/07/21 14:01:49 $
+ Version: $Revision: 1.255 $
Copyright (c) CREATIS (Centre de Recherche et d'Applications en Traitement de
l'Image). All rights reserved. See Doc/License.txt or
// as the Z coordinate,
// 0. for all the coordinates if nothing is found
//
-// Image Position (Patient) (0020,0032) What is it used for?
+// Image Position (Patient) (0020,0032) VM=3 What is it used for?
// -->
// The attribute Patient Orientation (0020,0020) from the General Image Module
// is of type 2C and has the condition Required if image does not require
// Image Orientation (0020,0037) and Image Position (0020,0032).
-// However, if the image does require the attributes Image Orientation (0020,0037)
-// and Image Position (0020,0032) then attribute Patient Orientation (0020,0020)
-// should not be present in the images.
+// However, if the image does require the attributes
+// - Image Orientation (Patient) (0020,0037), VM=6
+// - Image Position Patient (0020,0032), VM=3
+// then attribute Patient Orientation (0020,0020) should not be present
+// in the images.
//
// Remember also :
// Patient Position (0018,5100) values : HFP = Head First-Prone
// FFDL = Feet First-Decubitus Left
// FFP = Feet First-Prone
// FFS = Feet First-Supine
+// can also find SEMIERECT
+// SUPINE
// CS 2 Patient Orientation (0020 0020)
// When the coordinates of the image
-// are always present, this field is almost never used
+// are always present, this field is almost never used.
+// Better we don't tust it too much ...
+// Found Values are : L\P
+// L\FP
+// P\F
+// L\F
+// P\FR
+// R\F
+//
+// (0020|0037) [Image Orientation (Patient)] [1\0\0\0\1\0 ]
+
+
// ---------------------------------------------------------------
//
#include "gdcmFile.h"
* @param iop adress of the (6)float array to receive values
* @return cosines of image orientation patient
*/
-void File::GetImageOrientationPatient( float iop[6] )
+bool File::GetImageOrientationPatient( float iop[6] )
{
std::string strImOriPat;
//iop is supposed to be float[6]
&iop[0], &iop[1], &iop[2], &iop[3], &iop[4], &iop[5]) != 6 )
{
gdcmWarningMacro( "Wrong Image Orientation Patient (0020,0037). Less than 6 values were found." );
+ return false;
}
}
//For ACR-NEMA
&iop[0], &iop[1], &iop[2], &iop[3], &iop[4], &iop[5]) != 6 )
{
gdcmWarningMacro( "wrong Image Orientation Patient (0020,0035). Less than 6 values were found." );
+ return false;
}
}
+ return true;
}
/**
}
#endif
+// -----------------------------------------------------------------------------------------
+// THERALYS Algorithm to determine the most similar basic orientation
+//
+// Transliterated from original Python code.
+// Kept as close as possible to the original code
+// in order to speed up any further modif of Python code :-(
+// ------------------------------------------------------------------------------------------
+
+/**
+ * \brief THERALYS' Algorithm to determine the most similar basic orientation
+ * (Axial, Coronal, Sagital) of the image
+ * \note Should be run on the first gdcm::File of a 'coherent' Serie
+ * @return orientation code
+ * @return orientation code
+ * # 0 : Not Applicable (neither 0020,0037 Image Orientation Patient
+ * # nor 0020,0032Image Position found )
+ * # 1 : Axial
+ * # -1 : Axial invert
+ * # 2 : Coronal
+ * # -2 : Coronal invert
+ * # 3 : Sagital
+ * # -3 : Sagital invert
+ * # 4 : Heart Axial
+ * # -4 : Heart Axial invert
+ * # 5 : Heart Coronal
+ * # -5 : Heart Coronal invert
+ * # 6 : Heart Sagital
+ * # -6 : Heart Sagital invert
+ */
+float File::TypeOrientation( )
+{
+ float *iop = new float[6];
+ bool succ = GetImageOrientationPatient( iop );
+ if ( !succ )
+ {
+ delete iop;
+ return 0.;
+ }
+
+ vector3D ori1;
+ vector3D ori2;
+
+ ori1.x = iop[0]; ori1.y = iop[1]; ori1.z = iop[2];
+ ori1.x = iop[3]; ori2.y = iop[4]; ori2.z = iop[5];
+
+ // two perpendicular vectors describe one plane
+ float dicPlane[6][2][3] =
+ { { {1, 0, 0 },{0, 1, 0 } }, // Axial
+ { {1, 0, 0 },{0, 0, -1 } }, // Coronal
+ { {0, 1, 0 },{0, 0, -1 } }, // Sagittal
+ { { 0.8, 0.5, 0.0 },{-0.1, 0.1 , -0.95 } }, // Axial - HEART
+ { { 0.8, 0.5, 0.0 },{-0.6674, 0.687, 0.1794} }, // Coronal - HEART
+ { {-0.1, 0.1, -0.95},{-0.6674, 0.687, 0.1794} } // Sagittal - HEART
+ };
+
+ vector3D refA;
+ vector3D refB;
+ int i = 0;
+ Res res; // [ <result> , <memory of the last succes calcule> ]
+ res.first = 0;
+ res.second = 99999;
+ for (int numDicPlane=0; numDicPlane<6; numDicPlane++)
+ {
+ i = i + 1;
+ // refA=plane[0]
+ refA.x = dicPlane[numDicPlane][0][0];
+ refA.y = dicPlane[numDicPlane][0][1];
+ refA.z = dicPlane[numDicPlane][0][2];
+ // refB=plane[1]
+ refB.x = dicPlane[numDicPlane][1][0];
+ refB.y = dicPlane[numDicPlane][1][1];
+ refB.z = dicPlane[numDicPlane][1][2];
+ res=VerfCriterion( i, CalculLikelyhood2Vec(refA,refB,ori1,ori2), res );
+ res=VerfCriterion( -i, CalculLikelyhood2Vec(refB,refA,ori1,ori2), res );
+ }
+ delete iop;
+ return res.first;
+/*
+// i=0
+// res=[0,99999] ## [ <result> , <memory of the last succes calculus> ]
+// for plane in dicPlane:
+// i=i+1
+// refA=plane[0]
+// refB=plane[1]
+// res=self.VerfCriterion( i , self.CalculLikelyhood2Vec(refA,refB,ori1,ori2) , res )
+// res=self.VerfCriterion( -i , self.CalculLikelyhood2Vec(refB,refA,ori1,ori2) , res )
+// return res[0]
+*/
+
+}
+
+Res File::VerfCriterion(int typeCriterion, float criterionNew, Res res)
+{
+ float type = res.first;
+ float criterion = res.second;
+ if (criterionNew < criterion)
+ {
+ res.first = criterionNew;
+ res.second = typeCriterion;
+ }
+/*
+// type = res[0]
+// criterion = res[1]
+// # if criterionNew<0.1 and criterionNew<criterion:
+// if criterionNew<criterion:
+// criterion=criterionNew
+// type=typeCriterion
+// return [ type , criterion ]
+*/
+ return res;
+}
+
+float File::CalculLikelyhood2Vec(vector3D refA, vector3D refB,
+ vector3D ori1, vector3D ori2)
+{
+// # ------------------------- Purpose : -----------------------------------
+// # - This function determines the orientation similarity of two planes.
+// # Each plane is described by two vectors.
+// # ------------------------- Parameters : --------------------------------
+// # - <refA> : - type : vector 3D (float)
+// # - <refB> : - type : vector 3D (float)
+// # - Description of the first plane
+// # - <ori1> : - type : vector 3D (float)
+// # - <ori2> : - type : vector 3D (float)
+// # - Description of the second plane
+// # ------------------------- Return : ------------------------------------
+// # float : 0 if the planes are perpendicular. While the difference of
+// # the orientation between the planes are big more enlarge is
+// # the criterion.
+// # ------------------------- Other : -------------------------------------
+// # The calculus is based with vectors normalice
+
+ vector3D ori3 = ProductVectorial(ori1,ori2);
+ vector3D refC = ProductVectorial(refA,refB);
+ float res = powf(refC.x-ori3.x, 2.) +
+ powf(refC.y-ori3.y, 2.) +
+ powf(refC.z-ori3.z, 2.);
+
+/*
+// ori3=self.ProductVectorial(ori1,ori2)
+// refC=self.ProductVectorial(refA,refB)
+// res=math.pow(refC[0]-ori3[0],2) + math.pow(refC[1]-ori3[1],2) + math.pow(refC[2]-ori3[2],2)
+// return math.sqrt(res)
+*/
+ return sqrt(res);
+}
+
+vector3D File::ProductVectorial(vector3D vec1, vector3D vec2)
+{
+
+// # ------------------------- Purpose : -----------------------------------
+// # - Calculus of the poduct vectorial between two vectors 3D
+// # ------------------------- Parameters : --------------------------------
+// # - <vec1> : - type : vector 3D (float)
+// # - <vec2> : - type : vector 3D (float)
+// # ------------------------- Return : ------------------------------------
+// # (vec) : - Vector 3D
+// # ------------------------- Other : -------------------------------------
+
+ vector3D vec3;
+ vec3.x = vec1.y*vec3.z - vec1.z*vec2.y;
+ vec3.y = -( vec1.x*vec2.z - vec1.z*vec2.x);
+ vec3.z = vec1.x*vec2.y - vec1.y*vec2.x;
+/*
+// vec3=[0,0,0]
+// vec3[0]=vec1[1]*vec2[2] - vec1[2]*vec2[1]
+// vec3[1]=-( vec1[0]*vec2[2] - vec1[2]*vec2[0])
+// vec3[2]=vec1[0]*vec2[1] - vec1[1]*vec2[0]
+*/
+ return vec3;
+}
+
//-----------------------------------------------------------------------------
// Print