#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
-#include "jdhuff.h" /* Declarations shared with jdphuff.c */
+#include "jdhuff.h" /* Declarations shared with jdphuff.c */
/*
#else
#if MAX_COMPS_IN_SCAN == 4
#define ASSIGN_STATE(dest,src) \
- ((dest).last_dc_val[0] = (src).last_dc_val[0], \
- (dest).last_dc_val[1] = (src).last_dc_val[1], \
- (dest).last_dc_val[2] = (src).last_dc_val[2], \
- (dest).last_dc_val[3] = (src).last_dc_val[3])
+ ((dest).last_dc_val[0] = (src).last_dc_val[0], \
+ (dest).last_dc_val[1] = (src).last_dc_val[1], \
+ (dest).last_dc_val[2] = (src).last_dc_val[2], \
+ (dest).last_dc_val[3] = (src).last_dc_val[3])
#endif
#endif
/* These fields are loaded into local variables at start of each MCU.
* In case of suspension, we exit WITHOUT updating them.
*/
- bitread_perm_state bitstate; /* Bit buffer at start of MCU */
- savable_state saved; /* Other state at start of MCU */
+ bitread_perm_state bitstate; /* Bit buffer at start of MCU */
+ savable_state saved; /* Other state at start of MCU */
/* These fields are NOT loaded into local working state. */
- unsigned int restarts_to_go; /* MCUs left in this restart interval */
+ unsigned int restarts_to_go; /* MCUs left in this restart interval */
/* Pointers to derived tables (these workspaces have image lifespan) */
d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
/* Compute derived values for Huffman tables */
/* We may do this more than once for a table, but it's not expensive */
jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
- & entropy->dc_derived_tbls[dctbl]);
+ & entropy->dc_derived_tbls[dctbl]);
jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
- & entropy->ac_derived_tbls[actbl]);
+ & entropy->ac_derived_tbls[actbl]);
/* Initialize DC predictions to 0 */
entropy->saved.last_dc_val[ci] = 0;
}
GLOBAL(void)
jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
- d_derived_tbl ** pdtbl)
+ d_derived_tbl ** pdtbl)
{
JHUFF_TBL *htbl;
d_derived_tbl *dtbl;
if (*pdtbl == NULL)
*pdtbl = (d_derived_tbl *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(d_derived_tbl));
+ SIZEOF(d_derived_tbl));
dtbl = *pdtbl;
- dtbl->pub = htbl; /* fill in back link */
+ dtbl->pub = htbl; /* fill in back link */
/* Figure C.1: make table of Huffman code length for each symbol */
p = 0;
for (l = 1; l <= 16; l++) {
i = (int) htbl->bits[l];
- if (i < 0 || p + i > 256) /* protect against table overrun */
+ if (i < 0 || p + i > 256) /* protect against table overrun */
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
while (i--)
huffsize[p++] = (char) l;
p += htbl->bits[l];
dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
} else {
- dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
+ dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
}
}
dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
/* Generate left-justified code followed by all possible bit sequences */
lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
- dtbl->look_nbits[lookbits] = l;
- dtbl->look_sym[lookbits] = htbl->huffval[p];
- lookbits++;
+ dtbl->look_nbits[lookbits] = l;
+ dtbl->look_sym[lookbits] = htbl->huffval[p];
+ lookbits++;
}
}
}
if (isDC) {
for (i = 0; i < numsymbols; i++) {
int sym = htbl->huffval[i];
- if (sym < 0 || sym > 15)
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+ if (sym < 0 || sym > 15) {
+ // Now, we can read Philips MRI Images
+ htbl->huffval[i]=15;
+// ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+ }
}
}
}
*/
#ifdef SLOW_SHIFT_32
-#define MIN_GET_BITS 15 /* minimum allowable value */
+#define MIN_GET_BITS 15 /* minimum allowable value */
#else
#define MIN_GET_BITS (BIT_BUF_SIZE-7)
#endif
GLOBAL(boolean)
jpeg_fill_bit_buffer (bitread_working_state * state,
- register bit_buf_type get_buffer, register int bits_left,
- int nbits)
+ register bit_buf_type get_buffer, register int bits_left,
+ int nbits)
/* Load up the bit buffer to a depth of at least nbits */
{
/* Copy heavily used state fields into locals (hopefully registers) */
/* (It is assumed that no request will be for more than that many bits.) */
/* We fail to do so only if we hit a marker or are forced to suspend. */
- if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
+ if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
while (bits_left < MIN_GET_BITS) {
register int c;
/* Attempt to read a byte */
if (bytes_in_buffer == 0) {
- if (! (*cinfo->src->fill_input_buffer) (cinfo))
- return FALSE;
- next_input_byte = cinfo->src->next_input_byte;
- bytes_in_buffer = cinfo->src->bytes_in_buffer;
+ if (! (*cinfo->src->fill_input_buffer) (cinfo))
+ return FALSE;
+ next_input_byte = cinfo->src->next_input_byte;
+ bytes_in_buffer = cinfo->src->bytes_in_buffer;
}
bytes_in_buffer--;
c = GETJOCTET(*next_input_byte++);
/* If it's 0xFF, check and discard stuffed zero byte */
if (c == 0xFF) {
- /* Loop here to discard any padding FF's on terminating marker,
- * so that we can save a valid unread_marker value. NOTE: we will
- * accept multiple FF's followed by a 0 as meaning a single FF data
- * byte. This data pattern is not valid according to the standard.
- */
- do {
- if (bytes_in_buffer == 0) {
- if (! (*cinfo->src->fill_input_buffer) (cinfo))
- return FALSE;
- next_input_byte = cinfo->src->next_input_byte;
- bytes_in_buffer = cinfo->src->bytes_in_buffer;
- }
- bytes_in_buffer--;
- c = GETJOCTET(*next_input_byte++);
- } while (c == 0xFF);
-
- if (c == 0) {
- /* Found FF/00, which represents an FF data byte */
- c = 0xFF;
- } else {
- /* Oops, it's actually a marker indicating end of compressed data.
- * Save the marker code for later use.
- * Fine point: it might appear that we should save the marker into
- * bitread working state, not straight into permanent state. But
- * once we have hit a marker, we cannot need to suspend within the
- * current MCU, because we will read no more bytes from the data
- * source. So it is OK to update permanent state right away.
- */
- cinfo->unread_marker = c;
- /* See if we need to insert some fake zero bits. */
- goto no_more_bytes;
- }
+ /* Loop here to discard any padding FF's on terminating marker,
+ * so that we can save a valid unread_marker value. NOTE: we will
+ * accept multiple FF's followed by a 0 as meaning a single FF data
+ * byte. This data pattern is not valid according to the standard.
+ */
+ do {
+ if (bytes_in_buffer == 0) {
+ if (! (*cinfo->src->fill_input_buffer) (cinfo))
+ return FALSE;
+ next_input_byte = cinfo->src->next_input_byte;
+ bytes_in_buffer = cinfo->src->bytes_in_buffer;
+ }
+ bytes_in_buffer--;
+ c = GETJOCTET(*next_input_byte++);
+ } while (c == 0xFF);
+
+ if (c == 0) {
+ /* Found FF/00, which represents an FF data byte */
+ c = 0xFF;
+ } else {
+ /* Oops, it's actually a marker indicating end of compressed data.
+ * Save the marker code for later use.
+ * Fine point: it might appear that we should save the marker into
+ * bitread working state, not straight into permanent state. But
+ * once we have hit a marker, we cannot need to suspend within the
+ * current MCU, because we will read no more bytes from the data
+ * source. So it is OK to update permanent state right away.
+ */
+ cinfo->unread_marker = c;
+ /* See if we need to insert some fake zero bits. */
+ goto no_more_bytes;
+ }
}
/* OK, load c into get_buffer */
* appears per data segment.
*/
if (! cinfo->entropy->insufficient_data) {
- WARNMS(cinfo, JWRN_HIT_MARKER);
- cinfo->entropy->insufficient_data = TRUE;
+ WARNMS(cinfo, JWRN_HIT_MARKER);
+ cinfo->entropy->insufficient_data = TRUE;
}
/* Fill the buffer with zero bits */
get_buffer <<= MIN_GET_BITS - bits_left;
GLOBAL(int)
jpeg_huff_decode (bitread_working_state * state,
- register bit_buf_type get_buffer, register int bits_left,
- d_derived_tbl * htbl, int min_bits)
+ register bit_buf_type get_buffer, register int bits_left,
+ d_derived_tbl * htbl, int min_bits)
{
register int l = min_bits;
register INT32 code;
if (l > 16) {
WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
- return 0; /* fake a zero as the safest result */
+ return 0; /* fake a zero as the safest result */
}
return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! process_restart(cinfo))
- return FALSE;
+ return FALSE;
}
/* If we've run out of data, just leave the MCU set to zeroes.
/* Section F.2.2.1: decode the DC coefficient difference */
HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
}
if (entropy->dc_needed[blkn]) {
- /* Convert DC difference to actual value, update last_dc_val */
- int ci = cinfo->MCU_membership[blkn];
- s += state.last_dc_val[ci];
- state.last_dc_val[ci] = s;
- /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
- (*block)[0] = (JCOEF) s;
+ /* Convert DC difference to actual value, update last_dc_val */
+ int ci = cinfo->MCU_membership[blkn];
+ s += state.last_dc_val[ci];
+ state.last_dc_val[ci] = s;
+ /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
+ (*block)[0] = (JCOEF) s;
}
if (entropy->ac_needed[blkn]) {
- /* Section F.2.2.2: decode the AC coefficients */
- /* Since zeroes are skipped, output area must be cleared beforehand */
- for (k = 1; k < DCTSIZE2; k++) {
- HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
+ /* Section F.2.2.2: decode the AC coefficients */
+ /* Since zeroes are skipped, output area must be cleared beforehand */
+ for (k = 1; k < DCTSIZE2; k++) {
+ HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
- r = s >> 4;
- s &= 15;
+ r = s >> 4;
+ s &= 15;
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- /* Output coefficient in natural (dezigzagged) order.
- * Note: the extra entries in jpeg_natural_order[] will save us
- * if k >= DCTSIZE2, which could happen if the data is corrupted.
- */
- (*block)[jpeg_natural_order[k]] = (JCOEF) s;
- } else {
- if (r != 15)
- break;
- k += 15;
- }
- }
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ /* Output coefficient in natural (dezigzagged) order.
+ * Note: the extra entries in jpeg_natural_order[] will save us
+ * if k >= DCTSIZE2, which could happen if the data is corrupted.
+ */
+ (*block)[jpeg_natural_order[k]] = (JCOEF) s;
+ } else {
+ if (r != 15)
+ break;
+ k += 15;
+ }
+ }
} else {
- /* Section F.2.2.2: decode the AC coefficients */
- /* In this path we just discard the values */
- for (k = 1; k < DCTSIZE2; k++) {
- HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
+ /* Section F.2.2.2: decode the AC coefficients */
+ /* In this path we just discard the values */
+ for (k = 1; k < DCTSIZE2; k++) {
+ HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
- r = s >> 4;
- s &= 15;
+ r = s >> 4;
+ s &= 15;
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- DROP_BITS(s);
- } else {
- if (r != 15)
- break;
- k += 15;
- }
- }
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ DROP_BITS(s);
+ } else {
+ if (r != 15)
+ break;
+ k += 15;
+ }
+ }
}
}
entropy = (huff_entropy_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(huff_entropy_decoder));
+ SIZEOF(huff_entropy_decoder));
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
entropy->pub.start_pass = start_pass_huff_decoder;
entropy->pub.decode_mcu = decode_mcu;
* We do not support run-time selection of data precision, sorry.
*/
-#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
+//#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
+#define BITS_IN_JSAMPLE @GDCM_BITS_IN_JSAMPLE@
/*
* Maximum number of components (color channels) allowed in JPEG image.
* bytes of storage, whether actually used in an image or not.)
*/
-#define MAX_COMPONENTS 10 /* maximum number of image components */
+#define MAX_COMPONENTS 10 /* maximum number of image components */
/*
#endif /* HAVE_UNSIGNED_CHAR */
-#define MAXJSAMPLE 255
-#define CENTERJSAMPLE 128
+#define MAXJSAMPLE 255
+#define CENTERJSAMPLE 128
#endif /* BITS_IN_JSAMPLE == 8 */
typedef short JSAMPLE;
#define GETJSAMPLE(value) ((int) (value))
-#define MAXJSAMPLE 4095
-#define CENTERJSAMPLE 2048
+#define MAXJSAMPLE 4095
+#define CENTERJSAMPLE 2048
#endif /* BITS_IN_JSAMPLE == 12 */
/* INT16 must hold at least the values -32768..32767. */
-#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
+#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
typedef short INT16;
#endif
/* INT32 must hold at least signed 32-bit values. */
-#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
+#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
typedef long INT32;
#endif
*/
/* a function called through method pointers: */
-#define METHODDEF(type) static type
+#define METHODDEF(type) static type
/* a function used only in its module: */
-#define LOCAL(type) static type
+#define LOCAL(type) static type
/* a function referenced thru EXTERNs: */
#ifdef WIN32
- #define GLOBAL(type) __declspec( dllexport ) type
+ #define GLOBAL(type) __declspec( dllexport ) type
#else
- #define GLOBAL(type) type
+ #define GLOBAL(type) type
#endif
/* a reference to a GLOBAL function: */
#ifdef WIN32
- #define EXTERN(type) extern __declspec( dllexport ) type
+ #define EXTERN(type) extern __declspec( dllexport ) type
#else
- #define EXTERN(type) extern type
+ #define EXTERN(type) extern type
#endif
#ifndef HAVE_BOOLEAN
typedef int boolean;
#endif
-#ifndef FALSE /* in case these macros already exist */
-#define FALSE 0 /* values of boolean */
+#ifndef FALSE /* in case these macros already exist */
+#define FALSE 0 /* values of boolean */
#endif
#ifndef TRUE
-#define TRUE 1
+#define TRUE 1
#endif
/* Capability options common to encoder and decoder: */
-#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */
-#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */
-#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */
+#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */
+#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */
+#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */
/* Encoder capability options: */
#undef C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
-#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
-#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
+#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
+#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
/* Note: if you selected 12-bit data precision, it is dangerous to turn off
* ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
* precision, so jchuff.c normally uses entropy optimization to compute
#undef D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
-#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
-#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
+#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
+#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
-#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
+#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */
#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */
-#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
-#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
+#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
+#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
/* more capability options later, no doubt */
* can't use color quantization if you change that value.
*/
-#define RGB_RED 0 /* Offset of Red in an RGB scanline element */
-#define RGB_GREEN 1 /* Offset of Green */
-#define RGB_BLUE 2 /* Offset of Blue */
-#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */
+#define RGB_RED 0 /* Offset of Red in an RGB scanline element */
+#define RGB_GREEN 1 /* Offset of Green */
+#define RGB_BLUE 2 /* Offset of Blue */
+#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */
/* Definitions for speed-related optimizations. */
*/
#ifndef INLINE
-#ifdef __GNUC__ /* for instance, GNU C knows about inline */
+#ifdef __GNUC__ /* for instance, GNU C knows about inline */
#define INLINE __inline__
#endif
#ifndef INLINE
-#define INLINE /* default is to define it as empty */
+#define INLINE /* default is to define it as empty */
#endif
#endif
*/
#ifndef MULTIPLIER
-#define MULTIPLIER int /* type for fastest integer multiply */
+#define MULTIPLIER int /* type for fastest integer multiply */
#endif