]> Creatis software - CreaPhase.git/blobdiff - octave_packages/image-1.0.15/imremap.m
Add a useful package (from Source forge) for octave
[CreaPhase.git] / octave_packages / image-1.0.15 / imremap.m
diff --git a/octave_packages/image-1.0.15/imremap.m b/octave_packages/image-1.0.15/imremap.m
new file mode 100644 (file)
index 0000000..8675461
--- /dev/null
@@ -0,0 +1,229 @@
+## Copyright (C) 2006  Søren Hauberg
+## 
+## This program is free software; you can redistribute it and/or modify
+## it under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 2, or (at your option)
+## any later version.
+## 
+## This program is distributed in the hope that it will be useful, but
+## WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+## General Public License for more details. 
+## 
+## You should have received a copy of the GNU General Public License
+## along with this file.  If not, see <http://www.gnu.org/licenses/>.
+
+## -*- texinfo -*-
+## @deftypefn {Function File} @var{warped} = imremap(@var{im}, @var{XI}, @var{YI})
+## @deftypefnx{Function File} @var{warped} = imremap(@var{im}, @var{XI}, @var{YI}, @var{interp}, @var{extrapval})
+## @deftypefnx{Function File} [@var{warped}, @var{valid} ] = imremap(...)
+## Applies any geometric transformation to the image @var{im}.
+##
+## The arguments @var{XI} and @var{YI} are lookup tables that define the resulting
+## image
+## @example
+## @var{warped}(y,x) = @var{im}(@var{YI}(y,x), @var{XI}(y,x))
+## @end example
+## where @var{im} is assumed to be a continuous function, which is achieved
+## by interpolation. Note that the image @var{im} is expressed in a (X, Y)-coordinate
+## system and not a (row, column) system.
+##
+## The argument @var{interp} selects the used interpolation method, and most be one
+## of the following strings
+## @table @code
+## @item "nearest"
+## Nearest neighbor interpolation.
+## @item "linear"
+## @itemx "bilinear"
+## Bilinear interpolation. This is the default behavior.
+## @item "cubic"
+## @itemx "bicubic"
+## Bicubic interpolation.
+## @end table
+##
+## All values of the result that fall outside the original image will
+## be set to @var{extrapval}. For images of class @code{double} @var{extrapval}
+## defaults to @code{NA} and for other classes it defaults to 0.
+##
+## The optional output @var{valid} is a matrix of the same size as @var{warped}
+## that contains the value 1 in pixels where @var{warped} contains an interpolated
+## value, and 0 in pixels where @var{warped} contains an extrapolated value.
+## @seealso{imperspectivewarp, imrotate, imresize, imshear, interp2}
+## @end deftypefn
+
+function [warped, valid] = imremap(im, XI, YI, interp = "bilinear", extrapval = NA)
+  ## Check input
+  if (nargin < 3)
+    print_usage();
+  endif
+  
+  [imrows, imcols, imchannels, tmp] = size(im);
+  if (tmp != 1 || (imchannels != 1 && imchannels != 3))
+    error("imremap: first input argument must be an image");
+  endif
+  
+  if (!size_equal(XI, YI) || !ismatrix(XI) || ndims(XI) != 2)
+    error("imremap: XI and YI must be matrices of the same size");
+  endif
+  
+  if (!any(strcmpi(interp, {"nearest", "linear", "bilinear", "cubic", "bicubic", "spline"})))
+    error("imremap: unsupported interpolation method");
+  endif
+  if (any(strcmpi(interp, {"bilinear", "bicubic"})))
+    interp = interp(3:end); # Remove "bi"
+  endif
+  interp = lower(interp);
+  
+  if (!isscalar(extrapval))
+    error("imremap: extrapolation value must be a scalar");
+  endif
+  
+  ## Interpolate
+  if (imchannels == 1) # Gray
+    warped = grayinterp(im, XI, YI, interp, NA);
+  else # rgb image
+    for i = 3:-1:1
+      warped(:,:,i) = grayinterp(im(:,:,i), XI, YI, interp, NA);
+    endfor
+  endif
+  valid = !isna(warped);
+  warped(!valid) = extrapval;
+
+  ## Change the class of the results according to the class of the image
+  c = class(im);
+  if (strcmpi(c, "uint8"))
+    warped = uint8(warped);
+  elseif (strcmpi(c, "uint16"))
+    warped = uint16(warped);
+  endif
+
+endfunction
+
+function [warped, valid] = grayinterp(im, XI, YI, interp, extrapval)
+  if (strcmp(interp, "cubic"))
+    warped = graybicubic(double(im), XI, YI, NA);
+  else
+    warped = interp2(double(im), XI, YI, interp, NA);
+  endif
+  valid = !isna(warped);
+  warped(!valid) = extrapval;
+endfunction
+
+## -*- texinfo -*-
+## @deftypefn {Function File} {@var{zi}=} bicubic (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi})
+## Reference:
+## Image Processing, Analysis, and Machine Vision, 2nd Ed.
+## Sonka et.al.
+## Brooks/Cole Publishing Company
+## ISBN: 0-534-95393-X
+## @seealso{interp2}
+## @end deftypefn
+
+function ZI = graybicubic (Z, XI, YI, extrapval = NA)
+  
+  ## Allocate output
+  [X, Y] = meshgrid(1:columns(Z), 1:rows(Z));
+  [Zr, Zc] = size(XI);
+  ZI = zeros(Zr, Zc);
+  
+  ## Find inliers
+  inside = !( XI < X(1) | XI > X(end) | YI < Y(1) | YI > Y(end) );
+  
+  ## Scale XI and YI to match indices of Z (not needed when interpolating images)
+  #XI = (columns(Z)-1) * ( XI - X(1) ) / (X(end)-X(1)) + 1;
+  #YI = (rows(Z)-1)    * ( YI - Y(1) ) / (Y(end)-Y(1)) + 1;
+  
+  ## Start the real work
+  K = floor(XI);
+  L = floor(YI);
+
+  ## Coefficients
+  AY1  = bc((YI-L+1)); AX1  = bc((XI-K+1));
+  AY0  = bc((YI-L+0)); AX0  = bc((XI-K+0));
+  AY_1 = bc((YI-L-1)); AX_1 = bc((XI-K-1));
+  AY_2 = bc((YI-L-2)); AX_2 = bc((XI-K-2));
+
+  ## Perform interpolation
+  sz = size(Z);
+  %ZI(inside) = AY_2 .* AX_2 .* Z(sym_sub2ind(sz, L+2, K+2)) ...
+  ZI = AY_2 .* AX_2 .* Z(sym_sub2ind(sz, L+2, K+2)) ...
+     + AY_2 .* AX_1 .* Z(sym_sub2ind(sz, L+2, K+1))    ...
+     + AY_2 .* AX0  .* Z(sym_sub2ind(sz, L+2, K)) ...
+     + AY_2 .* AX1  .* Z(sym_sub2ind(sz, L+2, K-1)) ...
+     + AY_1 .* AX_2 .* Z(sym_sub2ind(sz, L+1, K+2)) ...
+     + AY_1 .* AX_1 .* Z(sym_sub2ind(sz, L+1, K+1))    ...
+     + AY_1 .* AX0  .* Z(sym_sub2ind(sz, L+1, K)) ...
+     + AY_1 .* AX1  .* Z(sym_sub2ind(sz, L+1, K-1)) ...
+     + AY0  .* AX_2 .* Z(sym_sub2ind(sz, L,   K+2)) ...
+     + AY0  .* AX_1 .* Z(sym_sub2ind(sz, L,   K+1))    ...
+     + AY0  .* AX0  .* Z(sym_sub2ind(sz, L,   K)) ...
+     + AY0  .* AX1  .* Z(sym_sub2ind(sz, L,   K-1)) ...
+     + AY1  .* AX_2 .* Z(sym_sub2ind(sz, L-1, K+2)) ...
+     + AY1  .* AX_1 .* Z(sym_sub2ind(sz, L-1, K+1))    ...
+     + AY1  .* AX0  .* Z(sym_sub2ind(sz, L-1, K)) ...
+     + AY1  .* AX1  .* Z(sym_sub2ind(sz, L-1, K-1));
+  ZI(!inside) = extrapval;
+
+endfunction
+
+## Checks if data is meshgrided
+function b = isgriddata(X)
+  D = X - repmat(X(1,:), rows(X), 1);
+  b = all(D(:) == 0);
+endfunction
+
+## Checks if data is equally spaced (assumes data is meshgrided)
+function b = isequallyspaced(X)
+  Dx = gradient(X(1,:));
+  b = all(Dx == Dx(1));
+endfunction
+
+## Computes the interpolation coefficients
+function o = bc(x)
+  x = abs(x);
+  o = zeros(size(x));
+  idx1 = (x < 1);
+  idx2 = !idx1 & (x < 2);
+  o(idx1) = 1 - 2.*x(idx1).^2 + x(idx1).^3;
+  o(idx2) = 4 - 8.*x(idx2) + 5.*x(idx2).^2 - x(idx2).^3;
+endfunction
+
+## This version of sub2ind behaves as if the data was symmetrically padded
+function ind = sym_sub2ind(sz, Y, X)
+  Y(Y<1) = 1 - Y(Y<1);
+  while (any(Y(:)>2*sz(1)))
+    Y(Y>2*sz(1)) = round( Y(Y>2*sz(1))/2 );
+  endwhile
+  Y(Y>sz(1)) = 1 + 2*sz(1) - Y(Y>sz(1));
+  X(X<1) = 1 - X(X<1);
+  while (any(X(:)>2*sz(2)))
+    X(X>2*sz(2)) = round( X(X>2*sz(2))/2 );
+  endwhile
+  X(X>sz(2)) = 1 + 2*sz(2) - X(X>sz(2));
+  ind = sub2ind(sz, Y, X);
+endfunction
+
+%!demo
+%! ## Generate a synthetic image and show it
+%! I = tril(ones(100)) + abs(rand(100)); I(I>1) = 1;
+%! I(20:30, 20:30) = !I(20:30, 20:30);
+%! I(70:80, 70:80) = !I(70:80, 70:80);
+%! figure, imshow(I);
+%! ## Resize the image to the double size and show it
+%! [XI, YI] = meshgrid(linspace(1, 100, 200));
+%! warped = imremap(I, XI, YI);
+%! figure, imshow(warped);
+
+%!demo
+%! ## Generate a synthetic image and show it
+%! I = tril(ones(100)) + abs(rand(100)); I(I>1) = 1;
+%! I(20:30, 20:30) = !I(20:30, 20:30);
+%! I(70:80, 70:80) = !I(70:80, 70:80);
+%! figure, imshow(I);
+%! ## Rotate the image around (0, 0) by -0.4 radians and show it
+%! [XI, YI] = meshgrid(1:100);
+%! R = [cos(-0.4) sin(-0.4); -sin(-0.4) cos(-0.4)];
+%! RXY = [XI(:), YI(:)] * R;
+%! XI = reshape(RXY(:,1), [100, 100]); YI = reshape(RXY(:,2), [100, 100]);
+%! warped = imremap(I, XI, YI);
+%! figure, imshow(warped);