]> Creatis software - CreaPhase.git/blobdiff - octave_packages/image-1.0.15/imsmooth.m
Add a useful package (from Source forge) for octave
[CreaPhase.git] / octave_packages / image-1.0.15 / imsmooth.m
diff --git a/octave_packages/image-1.0.15/imsmooth.m b/octave_packages/image-1.0.15/imsmooth.m
new file mode 100644 (file)
index 0000000..03d322c
--- /dev/null
@@ -0,0 +1,500 @@
+## Copyright (C) 2007  Soren Hauberg
+## 
+## This program is free software; you can redistribute it and/or modify
+## it under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 3, or (at your option)
+## any later version.
+## 
+## This program is distributed in the hope that it will be useful, but
+## WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+## General Public License for more details. 
+## 
+## You should have received a copy of the GNU General Public License
+## along with this file.  If not, see <http://www.gnu.org/licenses/>.
+
+## -*- texinfo -*-
+## @deftypefn {Function File} @var{J} = imsmooth(@var{I}, @var{name}, @var{options})
+## Smooth the given image using several different algorithms.
+##
+## The first input argument @var{I} is the image to be smoothed. If it is an RGB
+## image, each color plane is treated separately.
+## The variable @var{name} must be a string that determines which algorithm will
+## be used in the smoothing. It can be any of the following strings
+##
+## @table @asis
+## @item  "Gaussian"
+## Isotropic Gaussian smoothing. This is the default.
+## @item  "Average"
+## Smoothing using a rectangular averaging linear filter.
+## @item  "Disk"
+## Smoothing using a circular averaging linear filter.
+## @item  "Median"
+## Median filtering.
+## @item  "Bilateral"
+## Gaussian bilateral filtering.
+## @item  "Perona & Malik"
+## @itemx "Perona and Malik"
+## @itemx "P&M"
+## Smoothing using nonlinear isotropic diffusion as described by Perona and Malik.
+## @item "Custom Gaussian"
+## Gaussian smoothing with a spatially varying covariance matrix.
+## @end table
+##
+## In all algorithms the computation is done in double precision floating point
+## numbers, but the result has the same type as the input. Also, the size of the
+## smoothed image is the same as the input image.
+##
+## @strong{Isotropic Gaussian smoothing}
+##
+## The image is convolved with a Gaussian filter with spread @var{sigma}.
+## By default @var{sigma} is @math{0.5}, but this can be changed. If the third
+## input argument is a scalar it is used as the filter spread.
+##
+## The image is extrapolated symmetrically before the convolution operation.
+##
+## @strong{Rectangular averaging linear filter}
+##
+## The image is convolved with @var{N} by @var{M} rectangular averaging filter.
+## By default a 3 by 3 filter is used, but this can e changed. If the third
+## input argument is a scalar @var{N} a @var{N} by @var{N} filter is used. If the third
+## input argument is a two-vector @code{[@var{N}, @var{M}]} a @var{N} by @var{M}
+## filter is used.
+##
+## The image is extrapolated symmetrically before the convolution operation.
+##
+## @strong{Circular averaging linear filter}
+##
+## The image is convolved with circular averaging filter. By default the filter
+## has a radius of 5, but this can e changed. If the third input argument is a
+## scalar @var{r} the radius will be @var{r}.
+##
+## The image is extrapolated symmetrically before the convolution operation.
+##
+## @strong{Median filtering}
+##
+## Each pixel is replaced with the median of the pixels in the local area. By
+## default, this area is 3 by 3, but this can be changed. If the third input
+## argument is a scalar @var{N} the area will be @var{N} by @var{N}, and if it's
+## a two-vector [@var{N}, @var{M}] the area will be @var{N} by @var{M}.
+## 
+## The image is extrapolated symmetrically before the filtering is performed.
+##
+## @strong{Gaussian bilateral filtering}
+##
+## The image is smoothed using Gaussian bilateral filtering as described by
+## Tomasi and Manduchi [2]. The filtering result is computed as
+## @example
+## @var{J}(x0, y0) = k * SUM SUM @var{I}(x,y) * w(x, y, x0, y0, @var{I}(x0,y0), @var{I}(x,y))
+##                  x   y        
+## @end example
+## where @code{k} a normalisation variable, and
+## @example
+## w(x, y, x0, y0, @var{I}(x0,y0), @var{I}(x,y))
+##   = exp(-0.5*d([x0,y0],[x,y])^2/@var{sigma_d}^2)
+##     * exp(-0.5*d(@var{I}(x0,y0),@var{I}(x,y))^2/@var{sigma_r}^2),
+## @end example
+## with @code{d} being the Euclidian distance function. The two paramteres
+## @var{sigma_d} and @var{sigma_r} control the amount of smoothing. @var{sigma_d}
+## is the size of the spatial smoothing filter, while @var{sigma_r} is the size
+## of the range filter. When @var{sigma_r} is large the filter behaves almost
+## like the isotropic Gaussian filter with spread @var{sigma_d}, and when it is
+## small edges are preserved better. By default @var{sigma_d} is 2, and @var{sigma_r}
+## is @math{10/255} for floating points images (with integer images this is
+## multiplied with the maximal possible value representable by the integer class).
+## 
+## The image is extrapolated symmetrically before the filtering is performed.
+##
+## @strong{Perona and Malik}
+##
+## The image is smoothed using nonlinear isotropic diffusion as described by Perona and
+## Malik [1]. The algorithm iteratively updates the image using
+##
+## @example
+## I += lambda * (g(dN).*dN + g(dS).*dS + g(dE).*dE + g(dW).*dW)
+## @end example
+##
+## @noindent
+## where @code{dN} is the spatial derivative of the image in the North direction,
+## and so forth. The function @var{g} determines the behaviour of the diffusion.
+## If @math{g(x) = 1} this is standard isotropic diffusion.
+##
+## The above update equation is repeated @var{iter} times, which by default is 10
+## times. If the third input argument is a positive scalar, that number of updates
+## will be performed.
+##
+## The update parameter @var{lambda} affects how much smoothing happens in each
+## iteration. The algorithm can only be proved stable is @var{lambda} is between
+## 0 and 0.25, and by default it is 0.25. If the fourth input argument is given
+## this parameter can be changed.
+##
+## The function @var{g} in the update equation determines the type of the result.
+## By default @code{@var{g}(@var{d}) = exp(-(@var{d}./@var{K}).^2)} where @var{K} = 25.
+## This choice gives privileges to high-contrast edges over low-contrast ones.
+## An alternative is to set @code{@var{g}(@var{d}) = 1./(1 + (@var{d}./@var{K}).^2)},
+## which gives privileges to wide regions over smaller ones. The choice of @var{g}
+## can be controlled through the fifth input argument. If it is the string
+## @code{"method1"}, the first mentioned function is used, and if it is @var{"method2"}
+## the second one is used. The argument can also be a function handle, in which case
+## the given function is used. It should be noted that for stability reasons,
+## @var{g} should return values between 0 and 1.
+##
+## The following example shows how to set
+## @code{@var{g}(@var{d}) = exp(-(@var{d}./@var{K}).^2)} where @var{K} = 50.
+## The update will be repeated 25 times, with @var{lambda} = 0.25.
+##
+## @example
+## @var{g} = @@(@var{d}) exp(-(@var{d}./50).^2);
+## @var{J} = imsmooth(@var{I}, "p&m", 25, 0.25, @var{g});
+## @end example
+##
+## @strong{Custom Gaussian Smoothing}
+##
+## The image is smoothed using a Gaussian filter with a spatially varying covariance
+## matrix. The third and fourth input arguments contain the Eigenvalues of the
+## covariance matrix, while the fifth contains the rotation of the Gaussian.
+## These arguments can be matrices of the same size as the input image, or scalars.
+## In the last case the scalar is used in all pixels. If the rotation is not given
+## it defaults to zero.
+##
+## The following example shows how to increase the size of an Gaussian
+## filter, such that it is small near the upper right corner of the image, and
+## large near the lower left corner.
+##
+## @example
+## [@var{lambda1}, @var{lambda2}] = meshgrid (linspace (0, 25, columns (@var{I})), linspace (0, 25, rows (@var{I})));
+## @var{J} = imsmooth (@var{I}, "Custom Gaussian", @var{lambda1}, @var{lambda2});
+## @end example
+##
+## The implementation uses an elliptic filter, where only neighbouring pixels
+## with a Mahalanobis' distance to the current pixel that is less than 3 are
+## used to compute the response. The response is computed using double precision
+## floating points, but the result is of the same class as the input image.
+##
+## @strong{References}
+##
+## [1] P. Perona and J. Malik,
+## "Scale-space and edge detection using anisotropic diffusion",
+## IEEE Transactions on Pattern Analysis and Machine Intelligence,
+## 12(7):629-639, 1990.
+##
+## [2] C. Tomasi and R. Manduchi,
+## "Bilateral Filtering for Gray and Color Images",
+## Proceedings of the 1998 IEEE International Conference on Computer Vision, Bombay, India.
+##
+## @seealso{imfilter, fspecial}
+## @end deftypefn
+
+## TODO: Implement Joachim Weickert's anisotropic diffusion (it's soo cool)
+
+function J = imsmooth(I, name = "Gaussian", varargin)
+  ## Check inputs
+  if (nargin == 0)
+    print_usage();
+  endif
+  if (!ismatrix(I))
+    error("imsmooth: first input argument must be an image");
+  endif
+  [imrows, imcols, imchannels, tmp] = size(I);
+  if ((imchannels != 1 && imchannels != 3) || tmp != 1)
+    error("imsmooth: first input argument must be an image");
+  endif
+  if (nargin == 2 && isscalar (name))
+    varargin {1} = name;
+    name = "Gaussian";
+  endif
+  if (!ischar(name))
+    error("imsmooth: second input must be a string");
+  endif
+  len = length(varargin);
+  
+  ## Save information for later
+  C = class(I);
+  
+  ## Take action depending on 'name'
+  switch (lower(name))
+    ##############################
+    ###   Gaussian smoothing   ###
+    ##############################
+    case "gaussian"
+      ## Check input
+      s = 0.5;
+      if (len > 0)
+        if (isscalar(varargin{1}) && varargin{1} > 0)
+          s = varargin{1};
+        else
+          error("imsmooth: third input argument must be a positive scalar when performing Gaussian smoothing");
+        endif
+      endif
+      ## Compute filter
+      h = ceil(3*s);
+      f = exp( (-(-h:h).^2)./(2*s^2) ); f /= sum(f);
+      ## Pad image
+      I = double(impad(I, h, h, "symmetric"));
+      ## Perform the filtering
+      for i = imchannels:-1:1
+        J(:,:,i) = conv2(f, f, I(:,:,i), "valid");
+      endfor
+
+    ############################
+    ###   Square averaging   ###
+    ############################
+    case "average"
+      ## Check input
+      s = [3, 3];
+      if (len > 0)
+        if (isscalar(varargin{1}) && varargin{1} > 0)
+          s = [varargin{1}, varargin{1}];
+        elseif (isvector(varargin{1}) && length(varargin{1}) == 2 && all(varargin{1} > 0))
+          s = varargin{1};
+        else
+          error("imsmooth: third input argument must be a positive scalar or two-vector when performing averaging");
+        endif
+      endif
+      ## Compute filter
+      f2 = ones(1,s(1))/s(1);
+      f1 = ones(1,s(2))/s(2);
+      ## Pad image
+      I = impad(double(I), floor([s(2), s(2)-1]/2), floor([s(1), s(1)-1]/2), "symmetric");
+      ## Perform the filtering
+      for i = imchannels:-1:1
+        J(:,:,i) = conv2(f1, f2, I(:,:,i), "valid");
+      endfor
+      
+    ##############################
+    ###   Circular averaging   ###
+    ##############################
+    case "disk"
+      ## Check input
+      r = 5;
+      if (len > 0)
+        if (isscalar(varargin{1}) && varargin{1} > 0)
+          r = varargin{1};
+        else
+          error("imsmooth: third input argument must be a positive scalar when performing averaging");
+        endif
+      endif
+      ## Compute filter
+      f = fspecial("disk", r);
+      ## Pad image
+      I = impad(double(I), r, r, "symmetric");
+      ## Perform the filtering
+      for i = imchannels:-1:1
+        J(:,:,i) = conv2(I(:,:,i), f, "valid");
+      endfor
+    
+    ############################
+    ###   Median Filtering   ###
+    ############################
+    case "median"
+      ## Check input
+      s = [3, 3];
+      if (len > 0)
+        opt = varargin{1};
+        if (isscalar(opt) && opt > 0)
+          s = [opt, opt];
+        elseif (isvector(opt) && numel(opt) == 2 && all(opt>0))
+          s = opt;
+        else
+          error("imsmooth: third input argument must be a positive scalar or two-vector");
+        endif
+        s = round(s); # just in case the use supplies non-integers.
+      endif
+      ## Perform the filtering
+      for i = imchannels:-1:1
+        J(:,:,i) = medfilt2(I(:,:,i), s, "symmetric");
+      endfor
+    
+    ###############################
+    ###   Bilateral Filtering   ###
+    ###############################
+    case "bilateral"
+      ## Check input
+      if (len > 0 && !isempty(varargin{1}))
+        if (isscalar(varargin{1}) && varargin{1} > 0)
+          sigma_d = varargin{1};
+        else
+          error("imsmooth: spread of closeness function must be a positive scalar");
+        endif
+      else
+        sigma_d = 2;
+      endif
+      if (len > 1 && !isempty(varargin{2}))
+        if (isscalar(varargin{2}) && varargin{2} > 0)
+          sigma_r = varargin{2};
+        else
+          error("imsmooth: spread of similarity function must be a positive scalar");
+        endif
+      else
+        sigma_r = 10/255;
+        if (isinteger(I)), sigma_r *= intmax(C); endif
+      endif
+      ## Pad image
+      s = max([round(3*sigma_d),1]);
+      I = impad(I, s, s, "symmetric");
+      ## Perform the filtering
+      J = __bilateral__(I, sigma_d, sigma_r);
+    
+    ############################
+    ###   Perona and Malik   ###
+    ############################
+    case {"perona & malik", "perona and malik", "p&m"}
+      ## Check input
+      K = 25;
+      method1 = @(d) exp(-(d./K).^2);
+      method2 = @(d) 1./(1 + (d./K).^2);
+      method = method1;
+      lambda = 0.25;
+      iter = 10;
+      if (len > 0 && !isempty(varargin{1}))
+        if (isscalar(varargin{1}) && varargin{1} > 0)
+          iter = varargin{1};
+        else
+          error("imsmooth: number of iterations must be a positive scalar");
+        endif
+      endif
+      if (len > 1 && !isempty(varargin{2}))
+        if (isscalar(varargin{2}) && varargin{2} > 0)
+          lambda = varargin{2};
+        else
+          error("imsmooth: fourth input argument must be a scalar when using 'Perona & Malik'");
+        endif
+      endif
+      if (len > 2 && !isempty(varargin{3}))
+        fail = false;
+        if (ischar(varargin{3}))
+          if (strcmpi(varargin{3}, "method1"))
+            method = method1;
+          elseif (strcmpi(varargin{3}, "method2"))
+            method = method2;
+          else
+            fail = true;
+          endif
+        elseif (strcmp(typeinfo(varargin{3}), "function handle"))
+          method = varargin{3};
+        else
+          fail = true;
+        endif
+        if (fail)
+          error("imsmooth: fifth input argument must be a function handle or the string 'method1' or 'method2' when using 'Perona & Malik'");
+        endif
+      endif
+      ## Perform the filtering
+      I = double(I);
+      for i = imchannels:-1:1
+        J(:,:,i) = pm(I(:,:,i), iter, lambda, method);
+      endfor
+    
+    #####################################
+    ###   Custom Gaussian Smoothing   ###
+    #####################################
+    case "custom gaussian"
+      ## Check input
+      if (length (varargin) < 2)
+        error ("imsmooth: not enough input arguments");
+      elseif (length (varargin) == 2)
+        varargin {3} = 0; # default theta value
+      endif
+      arg_names = {"third", "fourth", "fifth"};
+      for k = 1:3
+        if (isscalar (varargin {k}))
+          varargin {k} = repmat (varargin {k}, imrows, imcols);
+        elseif (ismatrix (varargin {k}) && ndims (varargin {k}) == 2)
+          if (rows (varargin {k}) != imrows || columns (varargin {k}) != imcols)
+            error (["imsmooth: %s input argument must have same number of rows "
+                    "and columns as the input image"], arg_names {k});
+          endif
+        else
+          error ("imsmooth: %s input argument must be a scalar or a matrix", arg_names {k});
+        endif
+        if (!strcmp (class (varargin {k}), "double"))
+          error ("imsmooth: %s input argument must be of class 'double'", arg_names {k});
+        endif
+      endfor
+      
+      ## Perform the smoothing
+      for i = imchannels:-1:1
+        J(:,:,i) = __custom_gaussian_smoothing__ (I(:,:,i), varargin {:});
+      endfor
+    
+    ######################################
+    ###   Mean Shift Based Smoothing   ###
+    ######################################  
+    # NOT YET IMPLEMENTED
+    #case "mean shift"
+    #  J = mean_shift(I, varargin{:});
+
+    #############################
+    ###   Unknown filtering   ###
+    #############################
+    otherwise
+      error("imsmooth: unsupported smoothing type '%s'", name);
+  endswitch
+  
+  ## Cast the result to the same class as the input
+  J = cast(J, C);
+endfunction
+
+## Perona and Malik for gray-scale images
+function J = pm(I, iter, lambda, g)
+  ## Initialisation
+  [imrows, imcols] = size(I);
+  J = I;
+  
+  for i = 1:iter
+    ## Pad image
+    padded = impad(J, 1, 1, "replicate");
+
+    ## Spatial derivatives
+    dN = padded(1:imrows, 2:imcols+1) - J;
+    dS = padded(3:imrows+2, 2:imcols+1) - J;
+    dE = padded(2:imrows+1, 3:imcols+2) - J;
+    dW = padded(2:imrows+1, 1:imcols) - J;
+
+    gN = g(dN);
+    gS = g(dS);
+    gE = g(dE);
+    gW = g(dW);
+
+    ## Update
+    J += lambda*(gN.*dN + gS.*dS + gE.*dE + gW.*dW);
+  endfor
+endfunction
+
+## Mean Shift smoothing for gray-scale images
+## XXX: This function doesn't work!!
+#{
+function J = mean_shift(I, s1, s2)
+  sz = [size(I,2), size(I,1)];
+  ## Mean Shift
+  [x, y] = meshgrid(1:sz(1), 1:sz(2));
+  f = ones(s1);
+  tmp = conv2(ones(sz(2), sz(1)), f, "same"); # We use normalised convolution to handle the border
+  m00 = conv2(I, f, "same")./tmp;
+  m10 = conv2(I.*x, f, "same")./tmp;
+  m01 = conv2(I.*y, f, "same")./tmp;
+  ms_x = round( m10./m00 ); # konverter ms_x og ms_y til linære indices og arbejd med dem!
+  ms_y = round( m01./m00 );
+  
+  ms = sub2ind(sz, ms_y, ms_x);
+  %for i = 1:10
+  i = 0;
+  while (true)
+    disp(++i)
+    ms(ms) = ms;
+    #new_ms = ms(ms);
+    if (i >200), break; endif
+    #idx = ( abs(I(ms)-I(new_ms)) < s2 );
+    #ms(idx) = new_ms(idx);
+    %for j = 1:length(ms)
+    %  if (abs(I(ms(j))-I(ms(ms(j)))) < s2)
+    %    ms(j) = ms(ms(j));
+    %  endif
+    %endfor
+  endwhile
+  %endfor
+  
+  ## Compute result
+  J = I(ms);
+endfunction
+#}