]> Creatis software - CreaPhase.git/blobdiff - octave_packages/m/general/quadgk.m
update packages
[CreaPhase.git] / octave_packages / m / general / quadgk.m
diff --git a/octave_packages/m/general/quadgk.m b/octave_packages/m/general/quadgk.m
new file mode 100644 (file)
index 0000000..916f2e8
--- /dev/null
@@ -0,0 +1,461 @@
+## Copyright (C) 2008-2012 David Bateman
+##
+## This file is part of Octave.
+##
+## Octave is free software; you can redistribute it and/or modify it
+## under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 3 of the License, or (at
+## your option) any later version.
+##
+## Octave is distributed in the hope that it will be useful, but
+## WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+## General Public License for more details.
+##
+## You should have received a copy of the GNU General Public License
+## along with Octave; see the file COPYING.  If not, see
+## <http://www.gnu.org/licenses/>.
+
+## -*- texinfo -*-
+## @deftypefn  {Function File} {@var{q} =} quadgk (@var{f}, @var{a}, @var{b})
+## @deftypefnx {Function File} {@var{q} =} quadgk (@var{f}, @var{a}, @var{b}, @var{abstol})
+## @deftypefnx {Function File} {@var{q} =} quadgk (@var{f}, @var{a}, @var{b}, @var{abstol}, @var{trace})
+## @deftypefnx {Function File} {@var{q} =} quadgk (@var{f}, @var{a}, @var{b}, @var{prop}, @var{val}, @dots{})
+## @deftypefnx {Function File} {[@var{q}, @var{err}] =} quadgk (@dots{})
+##
+## Numerically evaluate the integral of @var{f} from @var{a} to @var{b}
+## using adaptive Gauss-Konrod quadrature.
+## @var{f} is a function handle, inline function, or string
+## containing the name of the function to evaluate.
+## The formulation is based on a proposal by L.F. Shampine,
+## @cite{"Vectorized adaptive quadrature in @sc{matlab}", Journal of
+## Computational and Applied Mathematics, pp131-140, Vol 211, Issue 2,
+## Feb 2008} where all function evaluations at an iteration are
+## calculated with a single call to @var{f}.  Therefore, the function
+## @var{f} must be vectorized and must accept a vector of input values @var{x}
+## and return an output vector representing the function evaluations at the
+## given values of @var{x}.
+##
+## @var{a} and @var{b} are the lower and upper limits of integration.  Either
+## or both limits may be infinite or contain weak end singularities.
+## Variable transformation will be used to treat any infinite intervals and
+## weaken the singularities.  For example:
+##
+## @example
+## quadgk (@@(x) 1 ./ (sqrt (x) .* (x + 1)), 0, Inf)
+## @end example
+##
+## @noindent
+## Note that the formulation of the integrand uses the
+## element-by-element operator @code{./} and all user functions to
+## @code{quadgk} should do the same.
+##
+## The optional argument @var{tol} defines the absolute tolerance used to stop
+## the integration procedure.  The default value is @math{1e^{-10}}.
+##
+## The algorithm used by @code{quadgk} involves subdividing the
+## integration interval and evaluating each subinterval.
+## If @var{trace} is true then after computing each of these partial
+## integrals display: (1) the number of subintervals at this step,
+## (2) the current estimate of the error @var{err}, (3) the current estimate
+## for the integral @var{q}.
+##
+## Alternatively, properties of @code{quadgk} can be passed to the function as
+## pairs @code{"@var{prop}", @var{val}}.  Valid properties are
+##
+## @table @code
+## @item AbsTol
+## Define the absolute error tolerance for the quadrature.  The default
+## absolute tolerance is 1e-10.
+##
+## @item RelTol
+## Define the relative error tolerance for the quadrature.  The default
+## relative tolerance is 1e-5.
+##
+## @item MaxIntervalCount
+## @code{quadgk} initially subdivides the interval on which to perform
+## the quadrature into 10 intervals.  Subintervals that have an
+## unacceptable error are subdivided and re-evaluated.  If the number of
+## subintervals exceeds 650 subintervals at any point then a poor
+## convergence is signaled and the current estimate of the integral is
+## returned.  The property 'MaxIntervalCount' can be used to alter the
+## number of subintervals that can exist before exiting.
+##
+## @item WayPoints
+## Discontinuities in the first derivative of the function to integrate can be
+## flagged with the  @code{"WayPoints"} property.  This forces the ends of
+## a subinterval to fall on the breakpoints of the function and can result in
+## significantly improved estimation of the error in the integral, faster
+## computation, or both.  For example,
+##
+## @example
+## quadgk (@@(x) abs (1 - x.^2), 0, 2, "Waypoints", 1)
+## @end example
+##
+## @noindent
+## signals the breakpoint in the integrand at @code{@var{x} = 1}.
+##
+## @item Trace
+## If logically true @code{quadgk} prints information on the
+## convergence of the quadrature at each iteration.
+## @end table
+##
+## If any of @var{a}, @var{b}, or @var{waypoints} is complex then the
+## quadrature is treated as a contour integral along a piecewise
+## continuous path defined by the above.  In this case the integral is
+## assumed to have no edge singularities.  For example,
+##
+## @example
+## @group
+## quadgk (@@(z) log (z), 1+1i, 1+1i, "WayPoints",
+##         [1-1i, -1,-1i, -1+1i])
+## @end group
+## @end example
+##
+## @noindent
+## integrates @code{log (z)} along the square defined by @code{[1+1i,
+##  1-1i, -1-1i, -1+1i]}
+##
+## The result of the integration is returned in @var{q}.
+## @var{err} is an approximate bound on the error in the integral
+## @code{abs (@var{q} - @var{I})}, where @var{I} is the exact value of the
+## integral.
+##
+## @seealso{quad, quadv, quadl, quadcc, trapz, dblquad, triplequad}
+## @end deftypefn
+
+function [q, err] = quadgk (f, a, b, varargin)
+  if (nargin < 3)
+    print_usage ();
+  endif
+
+  if (b < a)
+    [q, err] = quadgk (f, b, a, varargin{:});
+    q = -q;
+  else
+    abstol = 1e-10;
+    reltol = 1e-5;
+    waypoints = [];
+    maxint = 650;
+    trace = false;
+
+    if (nargin > 3)
+      if (! ischar (varargin{1}))
+        if (!isempty (varargin{1}))
+          abstol = varargin{1};
+          reltol = 0;
+        endif
+        if (nargin > 4)
+          trace = varargin{2};
+        endif
+        if (nargin > 5)
+          error ("quadgk: can not pass additional arguments to user function");
+        endif
+      else
+        idx = 1;
+        while (idx < nargin - 3)
+          if (ischar (varargin{idx}))
+            str = varargin{idx++};
+            if (strcmpi (str, "reltol"))
+              reltol = varargin{idx++};
+            elseif (strcmpi (str, "abstol"))
+              abstol = varargin{idx++};
+            elseif (strcmpi (str, "waypoints"))
+              waypoints = varargin{idx++} (:);
+              if (isreal(waypoints))
+                waypoints (waypoints < a | waypoints > b) = [];
+              endif
+            elseif (strcmpi (str, "maxintervalcount"))
+              maxint = varargin{idx++};
+            elseif (strcmpi (str, "trace"))
+              trace = varargin{idx++};
+            else
+              error ("quadgk: unknown property %s", str);
+            endif
+          else
+            error ("quadgk: expecting property to be a string");
+          endif
+        endwhile
+        if (idx != nargin - 2)
+          error ("quadgk: expecting properties in pairs");
+        endif
+      endif
+    endif
+
+    ## Convert function given as a string to a function handle
+    if (ischar (f))
+      f = @(x) feval (f, x);
+    endif
+
+    ## Use variable subsitution to weaken endpoint singularities and to
+    ## perform integration with endpoints at infinity. No transform for
+    ## contour integrals
+    if (iscomplex (a) || iscomplex (b) || iscomplex(waypoints))
+      ## contour integral, no transform
+      subs = [a; waypoints; b];
+      h = sum (abs (diff (subs)));
+      h0 = h;
+      trans = @(t) t;
+    elseif (isinf (a) && isinf(b))
+      ## Standard Infinite to finite integral transformation.
+      ##   \int_{-\infinity_^\infinity f(x) dx = \int_-1^1 f (g(t)) g'(t) dt
+      ## where
+      ##   g(t)  = t / (1 - t^2)
+      ##   g'(t) =  (1 + t^2) / (1 - t^2) ^ 2
+      ## waypoint transform is then
+      ##   t =  (2 * g(t)) ./ (1 + sqrt(1 + 4 * g(t) .^ 2))
+      if (!isempty (waypoints))
+        trans = @(x) (2 * x) ./ (1 + sqrt(1 + 4 * x .^ 2));
+        subs = [-1; trans(waypoints); 1];
+      else
+        subs = linspace (-1, 1, 11)';
+      endif
+      h = 2;
+      h0 = b - a;
+      trans = @(t) t ./ (1 - t.^2);
+      f = @(t) f (t ./ (1 - t .^ 2)) .* (1 + t .^ 2) ./ ((1 - t .^ 2) .^ 2);
+    elseif (isinf(a))
+      ## Formula defined in Shampine paper as two separate steps. One to
+      ## weaken singularity at finite end, then a second to transform to
+      ## a finite interval. The singularity weakening transform is
+      ##   \int_{-\infinity}^b f(x) dx =
+      ##               - \int_{-\infinity}^0 f (b - t^2) 2 t dt
+      ## (note minus sign) and the finite interval transform is
+      ##   \int_{-\infinity}^0 f(b - t^2)  2 t dt =
+      ##                  \int_{-1}^0 f (b - g(s) ^ 2) 2 g(s) g'(s) ds
+      ## where
+      ##   g(s)  = s / (1 + s)
+      ##   g'(s) = 1 / (1 + s) ^ 2
+      ## waypoint transform is then
+      ##   t = sqrt (b - x)
+      ##   s =  - t / (t + 1)
+      if (!isempty (waypoints))
+        tmp = sqrt (b - waypoints);
+        trans = @(x)  - x ./ (x + 1);
+        subs = [-1; trans(tmp); 0];
+      else
+        subs = linspace (-1, 0, 11)';
+      endif
+      h = 1;
+      h0 = b - a;
+      trans = @(t) b - (t ./ (1 + t)).^2;
+      f = @(s) - 2 * s .* f (b -  (s ./ (1 + s)) .^ 2) ./ ((1 + s) .^ 3);
+    elseif (isinf(b))
+      ## Formula defined in Shampine paper as two separate steps. One to
+      ## weaken singularity at finite end, then a second to transform to
+      ## a finite interval. The singularity weakening transform is
+      ##   \int_a^\infinity f(x) dx = \int_0^\infinity f (a + t^2) 2 t dt
+      ## and the finite interval transform is
+      ##  \int_0^\infinity f(a + t^2)  2 t dt =
+      ##           \int_0^1 f (a + g(s) ^ 2) 2 g(s) g'(s) ds
+      ## where
+      ##   g(s)  = s / (1 - s)
+      ##   g'(s) = 1 / (1 - s) ^ 2
+      ## waypoint transform is then
+      ##   t = sqrt (x - a)
+      ##   s = t / (t + 1)
+      if (!isempty (waypoints))
+        tmp = sqrt (waypoints - a);
+        trans = @(x) x ./ (x + 1);
+        subs = [0; trans(tmp); 1];
+      else
+        subs = linspace (0, 1, 11)';
+      endif
+      h = 1;
+      h0 = b - a;
+      trans = @(t) a + (t ./ (1 - t)).^2;
+      f = @(s) 2 * s .* f (a +  (s ./ (1 - s)) .^ 2) ./ ((1 - s) .^ 3);
+    else
+      ## Davis, Rabinowitz, "Methods of Numerical Integration" p441 2ed.
+      ## Presented in section 5 of the Shampine paper as
+      ##   g(t) = ((b - a) / 2) * (t / 2 * (3 - t^2)) + (b + a) / 2
+      ##   g'(t) = ((b-a)/4) * (3 - 3t^2);
+      ## waypoint transform can then be found by solving for t with
+      ## Maxima (solve (c + 3*t -  3^3, t);). This gives 3 roots, two of
+      ## which are complex for values between a and b and so can be
+      ## ignored. The third is
+      ##  c = (-4*x + 2*(b+a)) / (b-a);
+      ##  k = ((sqrt(c^2 - 4) + c)/2)^(1/3);
+      ##  t = (sqrt(3)* 1i * (1 - k^2) - (1 + k^2)) / 2 / k;
+      if (! isempty (waypoints))
+        trans = @__quadgk_finite_waypoint__;
+        subs = [-1; trans(waypoints, a, b); 1];
+      else
+        subs = linspace(-1, 1, 11)';
+      endif
+      h = 2;
+      h0 = b - a;
+      trans = @(t) ((b - a) ./ 4) * t .* (3 - t.^2) + (b + a) ./ 2;
+      f = @(t) f((b - a) ./ 4 .* t .* (3 - t.^2) + (b + a) ./ 2) .* ...
+           3 .* (b - a) ./ 4 .* (1 - t.^2);
+    endif
+
+    ## Split interval into at least 10 subinterval with a 15 point
+    ## Gauss-Kronrod rule giving a minimum of 150 function evaluations
+    while (length (subs) < 11)
+      subs = [subs' ; subs(1:end-1)' + diff(subs') ./ 2, NaN](:)(1 : end - 1);
+    endwhile
+    subs = [subs(1:end-1), subs(2:end)];
+
+    warn_state = warning ("query", "Octave:divide-by-zero");
+
+    unwind_protect
+      ## Singularity will cause divide by zero warnings
+      warning ("off", "Octave:divide-by-zero");
+
+      ## Initial evaluation of the integrand on the subintervals
+      [q_subs, q_errs] = __quadgk_eval__ (f, subs);
+      q0 = sum (q_subs);
+      err0 = sum (q_errs);
+
+      if (isa (a, "single") || isa (b, "single") || isa (waypoints, "single"))
+        myeps = eps ("single");
+      else
+        myeps = eps;
+      endif
+
+      first = true;
+      while (true)
+        ## Check for subintervals that are too small. Test must be
+        ## performed in untransformed subintervals. What is a good
+        ## value for this test. Shampine suggests 100*eps
+        if (any (abs (diff (trans (subs), [], 2) / h0) < 100 * myeps))
+          q = q0;
+          err = err0;
+          break;
+        endif
+
+        ## Quit if any evaluations are not finite (Inf or NaN)
+        if (any (! isfinite (q_subs)))
+          warning ("quadgk: non finite integrand encountered");
+          q = q0;
+          err = err0;
+          break;
+        endif
+
+        tol = max (abstol, reltol .* abs (q0));
+
+        ## If the global error estimate is meet exit
+        if (err0 < tol)
+          q = q0;
+          err = err0;
+          break;
+        endif
+
+        ## Accept the subintervals that meet the convergence criteria
+        idx = find (abs (q_errs) < tol .* abs(diff (subs, [], 2)) ./ h);
+        if (first)
+          q = sum (q_subs (idx));
+          err = sum (q_errs(idx));
+          first = false;
+        else
+          q0 = q + sum (q_subs);
+          err0 = err + sum (q_errs);
+          q += sum (q_subs (idx));
+          err += sum (q_errs(idx));
+        endif
+        subs(idx,:) = [];
+
+        ## If no remaining subintervals exit
+        if (rows (subs) == 0)
+          break;
+        endif
+
+        if (trace)
+          disp([rows(subs), err, q0]);
+        endif
+
+        ## Split remaining subintervals in two
+        mid = (subs(:,2) + subs(:,1)) ./ 2;
+        subs = [subs(:,1), mid; mid, subs(:,2)];
+
+        ## If the maximum subinterval count is met accept remaining
+        ## subinterval and exit
+        if (rows (subs) > maxint)
+          warning ("quadgk: maximum interval count (%d) met", maxint);
+          q += sum (q_subs);
+          err += sum (q_errs);
+          break;
+        endif
+
+        ## Evaluation of the integrand on the remaining subintervals
+        [q_subs, q_errs] = __quadgk_eval__ (f, subs);
+      endwhile
+
+      if (err > max (abstol, reltol * abs(q)))
+        warning ("quadgk: Error tolerance not met. Estimated error %g", err);
+      endif
+    unwind_protect_cleanup
+      if (strcmp (warn_state.state, "on"))
+        warning ("on", "Octave:divide-by-zero");
+      endif
+    end_unwind_protect
+  endif
+endfunction
+
+function [q, err] = __quadgk_eval__ (f, subs)
+  ## A (15,7) point pair of Gauss-Konrod quadrature rules. The abscissa
+  ## and weights are copied directly from dqk15w.f from quadpack
+
+  persistent abscissa = [-0.9914553711208126e+00, -0.9491079123427585e+00, ...
+                         -0.8648644233597691e+00, -0.7415311855993944e+00, ...
+                         -0.5860872354676911e+00, -0.4058451513773972e+00, ...
+                         -0.2077849550078985e+00,  0.0000000000000000e+00, ...
+                          0.2077849550078985e+00,  0.4058451513773972e+00, ...
+                          0.5860872354676911e+00,  0.7415311855993944e+00, ...
+                          0.8648644233597691e+00,  0.9491079123427585e+00, ...
+                          0.9914553711208126e+00];
+
+  persistent weights15 = ...
+      diag ([0.2293532201052922e-01,  0.6309209262997855e-01, ...
+             0.1047900103222502e+00,  0.1406532597155259e+00, ...
+             0.1690047266392679e+00,  0.1903505780647854e+00, ...
+             0.2044329400752989e+00,  0.2094821410847278e+00, ...
+             0.2044329400752989e+00,  0.1903505780647854e+00, ...
+             0.1690047266392679e+00,  0.1406532597155259e+00, ...
+             0.1047900103222502e+00,  0.6309209262997855e-01, ...
+             0.2293532201052922e-01]);
+
+  persistent weights7  = ...
+      diag ([0.1294849661688697e+00,  0.2797053914892767e+00, ...
+             0.3818300505051889e+00,  0.4179591836734694e+00, ...
+             0.3818300505051889e+00,  0.2797053914892767e+00, ...
+             0.1294849661688697e+00]);
+
+  halfwidth = diff (subs, [], 2) ./ 2;
+  center = sum (subs, 2) ./ 2;;
+  x = bsxfun (@plus, halfwidth * abscissa, center);
+  y = reshape (f (x(:)), size(x));
+
+  ## This is faster than using bsxfun as the * operator can use a
+  ## single BLAS call, rather than rows(sub) calls to the @times
+  ## function.
+  q = sum (y * weights15, 2) .* halfwidth;
+  err = abs (sum (y(:,2:2:end) * weights7, 2) .* halfwidth - q);
+endfunction
+
+function t = __quadgk_finite_waypoint__ (x, a, b)
+  c = (-4 .* x + 2.* (b + a)) ./ (b - a);
+  k = ((sqrt(c .^ 2 - 4) + c) ./ 2) .^ (1/3);
+  t = real ((sqrt(3) .* 1i * (1 - k .^ 2) - (1 + k .^ 2)) ./ 2 ./ k);
+endfunction
+
+%error (quadgk (@sin))
+%error (quadgk (@sin, -pi))
+%error (quadgk (@sin, -pi, pi, 'DummyArg'))
+
+%!assert (quadgk(@sin,-pi,pi), 0, 1e-6)
+%!assert (quadgk(inline('sin'),-pi,pi), 0, 1e-6)
+%!assert (quadgk('sin',-pi,pi), 0, 1e-6)
+%!assert (quadgk(@sin,-pi,pi,'waypoints', 0, 'MaxIntervalCount', 100, 'reltol', 1e-3, 'abstol', 1e-6, 'trace', false), 0, 1e-6)
+%!assert (quadgk(@sin,-pi,pi,1e-6,false), 0, 1e-6)
+
+%!assert (quadgk(@sin,-pi,0), -2, 1e-6)
+%!assert (quadgk(@sin,0,pi), 2, 1e-6)
+%!assert (quadgk(@(x) 1./sqrt(x), 0, 1), 2, 1e-6)
+%!assert (quadgk (@(x) abs (1 - x.^2), 0, 2, 'Waypoints', 1), 2, 1e-6)
+%!assert (quadgk(@(x) 1./(sqrt(x).*(x+1)), 0, Inf), pi, 1e-6)
+%!assert (quadgk (@(z) log (z), 1+1i, 1+1i, 'WayPoints', [1-1i, -1,-1i, -1+1i]), -pi * 1i, 1e-6)
+
+%!assert (quadgk (@(x) exp(-x .^ 2), -Inf, Inf), sqrt(pi), 1e-6)
+%!assert (quadgk (@(x) exp(-x .^ 2), -Inf, 0), sqrt(pi)/2, 1e-6)