]> Creatis software - CreaPhase.git/blobdiff - octave_packages/m/general/quadv.m
update packages
[CreaPhase.git] / octave_packages / m / general / quadv.m
diff --git a/octave_packages/m/general/quadv.m b/octave_packages/m/general/quadv.m
new file mode 100644 (file)
index 0000000..1f0dbba
--- /dev/null
@@ -0,0 +1,161 @@
+## Copyright (C) 2008-2012 David Bateman
+## Copyright (C) 2012 Alexander Klein
+##
+## This file is part of Octave.
+##
+## Octave is free software; you can redistribute it and/or modify it
+## under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 3 of the License, or (at
+## your option) any later version.
+##
+## Octave is distributed in the hope that it will be useful, but
+## WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+## General Public License for more details.
+##
+## You should have received a copy of the GNU General Public License
+## along with Octave; see the file COPYING.  If not, see
+## <http://www.gnu.org/licenses/>.
+
+## -*- texinfo -*-
+## @deftypefn  {Function File} {@var{q} =} quadv (@var{f}, @var{a}, @var{b})
+## @deftypefnx {Function File} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol})
+## @deftypefnx {Function File} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace})
+## @deftypefnx {Function File} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}, @var{p1}, @var{p2}, @dots{})
+## @deftypefnx {Function File} {[@var{q}, @var{nfun}] =} quadv (@dots{})
+##
+## Numerically evaluate the integral of @var{f} from @var{a} to @var{b}
+## using an adaptive Simpson's rule.
+## @var{f} is a function handle, inline function, or string
+## containing the name of the function to evaluate.
+## @code{quadv} is a vectorized version of @code{quad} and the function
+## defined by @var{f} must accept a scalar or vector as input and return a
+## scalar, vector, or array as output.
+##
+## @var{a} and @var{b} are the lower and upper limits of integration.  Both
+## limits must be finite.
+##
+## The optional argument @var{tol} defines the tolerance used to stop
+## the adaptation procedure.  The default value is @math{1e^{-6}}.
+##
+## The algorithm used by @code{quadv} involves recursively subdividing the
+## integration interval and applying Simpson's rule on each subinterval.
+## If @var{trace} is true then after computing each of these partial
+## integrals display: (1) the total number of function evaluations,
+## (2) the left end of the subinterval, (3) the length of the subinterval,
+## (4) the approximation of the integral over the subinterval.
+##
+## Additional arguments @var{p1}, etc., are passed directly to the function
+## @var{f}.  To use default values for @var{tol} and @var{trace}, one may pass
+## empty matrices ([]).
+##
+## The result of the integration is returned in @var{q}.  @var{nfun} indicates
+## the number of function evaluations that were made.
+##
+## Note: @code{quadv} is written in Octave's scripting language and can be
+## used recursively in @code{dblquad} and @code{triplequad}, unlike the
+## similar @code{quad} function.
+## @seealso{quad, quadl, quadgk, quadcc, trapz, dblquad, triplequad}
+## @end deftypefn
+
+function [q, nfun] = quadv (f, a, b, tol, trace, varargin)
+  ## TODO: Make norm for convergence testing configurable
+
+  if (nargin < 3)
+    print_usage ();
+  endif
+  if (nargin < 4)
+    tol = [];
+  endif
+  if (nargin < 5)
+    trace = [];
+  endif
+  if (isa (a, "single") || isa (b, "single"))
+    myeps = eps ("single");
+  else
+    myeps = eps;
+  endif
+  if (isempty (tol))
+    tol = 1e-6;
+  endif
+  if (isempty (trace))
+    trace = 0;
+  endif
+
+  ## Split the interval into 3 abscissa, and apply a 3 point Simpson's rule
+  c = (a + b) / 2;
+  fa = feval (f, a, varargin{:});
+  fc = feval (f, c, varargin{:});
+  fb = feval (f, b, varargin{:});
+  nfun = 3;
+
+  ## If have edge singularities, move edge point by eps*(b-a) as
+  ## discussed in Shampine paper used to implement quadgk
+  if (any (isinf (fa(:))))
+    fa = feval (f, a + myeps * (b-a), varargin{:});
+  endif
+  if (any (isinf (fb(:))))
+    fb = feval (f, b - myeps * (b-a), varargin{:});
+  endif
+
+  h = (b - a);
+  q = (b - a) / 6 * (fa + 4 * fc + fb);
+
+  [q, nfun, hmin] = simpsonstp (f, a, b, c, fa, fb, fc, q, nfun, abs (h),
+                                tol, trace, varargin{:});
+
+  if (nfun > 10000)
+    warning ("maximum iteration count reached");
+  elseif (any (isnan (q)(:) | isinf (q)(:)))
+    warning ("infinite or NaN function evaluations were returned");
+  elseif (hmin < (b - a) * myeps)
+    warning ("minimum step size reached -- possibly singular integral");
+  endif
+endfunction
+
+function [q, nfun, hmin] = simpsonstp (f, a, b, c, fa, fb, fc, q0,
+                                       nfun, hmin, tol, trace, varargin)
+  if (nfun > 10000)
+    q = q0;
+  else
+    d = (a + c) / 2;
+    e = (c + b) / 2;
+    fd = feval (f, d, varargin{:});
+    fe = feval (f, e, varargin{:});
+    nfun += 2;
+    q1 = (c - a) / 6 * (fa + 4 * fd + fc);
+    q2 = (b - c) / 6 * (fc + 4 * fe + fb);
+    q = q1 + q2;
+
+    if (abs(a -  c) < hmin)
+      hmin = abs (a - c);
+    endif
+
+    if (trace)
+      disp ([nfun, a, b-a, q]);
+    endif
+
+    ## Force at least one adpative step.
+    ## Not vectorizing q-q0 in the norm provides a more rigid criterion for
+    ## matrix-valued functions.
+    if (nfun == 5 || norm (q - q0, Inf) > tol)
+      [q1, nfun, hmin] = simpsonstp (f, a, c, d, fa, fc, fd, q1, nfun, hmin,
+                                    tol, trace, varargin{:});
+      [q2, nfun, hmin] = simpsonstp (f, c, b, e, fc, fb, fe, q2, nfun, hmin,
+                                     tol, trace, varargin{:});
+      q = q1 + q2;
+    endif
+  endif
+endfunction
+
+%!assert (quadv (@sin, 0, 2 * pi), 0, 1e-5)
+%!assert (quadv (@sin, 0, pi), 2, 1e-5)
+
+%% Handles weak singularities at the edge
+%!assert (quadv (@(x) 1 ./ sqrt(x), 0, 1), 2, 1e-5)
+
+%% Handles vector-valued functions
+%!assert (quadv (@(x) [(sin (x)), (sin (2 * x))], 0, pi), [2, 0], 1e-5)
+
+%% Handles matrix-valued functions
+%!assert (quadv (@(x) [ x, x, x; x, 1./sqrt(x), x; x, x, x ], 0, 1 ), [0.5, 0.5, 0.5; 0.5, 2, 0.5; 0.5, 0.5, 0.5], 1e-5)