]> Creatis software - CreaPhase.git/blobdiff - octave_packages/m/optimization/fsolve.m
update packages
[CreaPhase.git] / octave_packages / m / optimization / fsolve.m
diff --git a/octave_packages/m/optimization/fsolve.m b/octave_packages/m/optimization/fsolve.m
new file mode 100644 (file)
index 0000000..cded127
--- /dev/null
@@ -0,0 +1,610 @@
+## Copyright (C) 2008-2012 VZLU Prague, a.s.
+##
+## This file is part of Octave.
+##
+## Octave is free software; you can redistribute it and/or modify it
+## under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 3 of the License, or (at
+## your option) any later version.
+##
+## Octave is distributed in the hope that it will be useful, but
+## WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+## General Public License for more details.
+##
+## You should have received a copy of the GNU General Public License
+## along with Octave; see the file COPYING.  If not, see
+## <http://www.gnu.org/licenses/>.
+##
+## Author: Jaroslav Hajek <highegg@gmail.com>
+
+## -*- texinfo -*-
+## @deftypefn  {Function File} {} fsolve (@var{fcn}, @var{x0}, @var{options})
+## @deftypefnx {Function File} {[@var{x}, @var{fvec}, @var{info}, @var{output}, @var{fjac}] =} fsolve (@var{fcn}, @dots{})
+## Solve a system of nonlinear equations defined by the function @var{fcn}.
+## @var{fcn} should accept a vector (array) defining the unknown variables,
+## and return a vector of left-hand sides of the equations.  Right-hand sides
+## are defined to be zeros.
+## In other words, this function attempts to determine a vector @var{x} such
+## that @code{@var{fcn} (@var{x})} gives (approximately) all zeros.
+## @var{x0} determines a starting guess.  The shape of @var{x0} is preserved
+## in all calls to @var{fcn}, but otherwise it is treated as a column vector.
+## @var{options} is a structure specifying additional options.
+## Currently, @code{fsolve} recognizes these options:
+## @code{"FunValCheck"}, @code{"OutputFcn"}, @code{"TolX"},
+## @code{"TolFun"}, @code{"MaxIter"}, @code{"MaxFunEvals"},
+## @code{"Jacobian"}, @code{"Updating"}, @code{"ComplexEqn"}
+## @code{"TypicalX"}, @code{"AutoScaling"} and @code{"FinDiffType"}.
+##
+## If @code{"Jacobian"} is @code{"on"}, it specifies that @var{fcn},
+## called with 2 output arguments, also returns the Jacobian matrix
+## of right-hand sides at the requested point.  @code{"TolX"} specifies
+## the termination tolerance in the unknown variables, while
+## @code{"TolFun"} is a tolerance for equations.  Default is @code{1e-7}
+## for both @code{"TolX"} and @code{"TolFun"}.
+##
+## If @code{"AutoScaling"} is on, the variables will be automatically scaled
+## according to the column norms of the (estimated) Jacobian.  As a result,
+## TolF becomes scaling-independent.  By default, this option is off, because
+## it may sometimes deliver unexpected (though mathematically correct) results.
+##
+## If @code{"Updating"} is "on", the function will attempt to use Broyden
+## updates to update the Jacobian, in order to reduce the amount of Jacobian
+## calculations.
+## If your user function always calculates the Jacobian (regardless of number
+## of output arguments), this option provides no advantage and should be set to
+## false.
+##
+## @code{"ComplexEqn"} is @code{"on"}, @code{fsolve} will attempt to solve
+## complex equations in complex variables, assuming that the equations possess a
+## complex derivative (i.e., are holomorphic).  If this is not what you want,
+## should unpack the real and imaginary parts of the system to get a real
+## system.
+##
+## For description of the other options, see @code{optimset}.
+##
+## On return, @var{fval} contains the value of the function @var{fcn}
+## evaluated at @var{x}, and @var{info} may be one of the following values:
+##
+## @table @asis
+## @item 1
+## Converged to a solution point.  Relative residual error is less than
+## specified by TolFun.
+##
+## @item 2
+## Last relative step size was less that TolX.
+##
+## @item 3
+## Last relative decrease in residual was less than TolF.
+##
+## @item 0
+## Iteration limit exceeded.
+##
+## @item -3
+## The trust region radius became excessively small.
+## @end table
+##
+## Note: If you only have a single nonlinear equation of one variable, using
+## @code{fzero} is usually a much better idea.
+##
+## Note about user-supplied Jacobians:
+## As an inherent property of the algorithm, Jacobian is always requested for a
+## solution vector whose residual vector is already known, and it is the last
+## accepted successful step.  Often this will be one of the last two calls, but
+## not always.  If the savings by reusing intermediate results from residual
+## calculation in Jacobian calculation are significant, the best strategy is to
+## employ OutputFcn: After a vector is evaluated for residuals, if OutputFcn is
+## called with that vector, then the intermediate results should be saved for
+## future Jacobian evaluation, and should be kept until a Jacobian evaluation
+## is requested or until outputfcn is called with a different vector, in which
+## case they should be dropped in favor of this most recent vector.  A short
+## example how this can be achieved follows:
+##
+## @example
+## function [fvec, fjac] = user_func (x, optimvalues, state)
+## persistent sav = [], sav0 = [];
+## if (nargin == 1)
+##   ## evaluation call
+##   if (nargout == 1)
+##     sav0.x = x; # mark saved vector
+##     ## calculate fvec, save results to sav0.
+##   elseif (nargout == 2)
+##     ## calculate fjac using sav.
+##   endif
+## else
+##   ## outputfcn call.
+##   if (all (x == sav0.x))
+##     sav = sav0;
+##   endif
+##   ## maybe output iteration status, etc.
+## endif
+## endfunction
+##
+## ## @dots{}
+##
+## fsolve (@@user_func, x0, optimset ("OutputFcn", @@user_func, @dots{}))
+## @end example
+## @seealso{fzero, optimset}
+## @end deftypefn
+
+## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
+## PKG_ADD: [~] = __all_opts__ ("fsolve");
+
+function [x, fvec, info, output, fjac] = fsolve (fcn, x0, options = struct ())
+
+  ## Get default options if requested.
+  if (nargin == 1 && ischar (fcn) && strcmp (fcn, 'defaults'))
+    x = optimset ("MaxIter", 400, "MaxFunEvals", Inf, \
+    "Jacobian", "off", "TolX", 1e-7, "TolFun", 1e-7,
+    "OutputFcn", [], "Updating", "on", "FunValCheck", "off",
+    "ComplexEqn", "off", "FinDiffType", "central",
+    "TypicalX", [], "AutoScaling", "off");
+    return;
+  endif
+
+  if (nargin < 2 || nargin > 3 || ! ismatrix (x0))
+    print_usage ();
+  endif
+
+  if (ischar (fcn))
+    fcn = str2func (fcn, "global");
+  elseif (iscell (fcn))
+    fcn = @(x) make_fcn_jac (x, fcn{1}, fcn{2});
+  endif
+
+  xsiz = size (x0);
+  n = numel (x0);
+
+  has_jac = strcmpi (optimget (options, "Jacobian", "off"), "on");
+  cdif = strcmpi (optimget (options, "FinDiffType", "central"), "central");
+  maxiter = optimget (options, "MaxIter", 400);
+  maxfev = optimget (options, "MaxFunEvals", Inf);
+  outfcn = optimget (options, "OutputFcn");
+  updating = strcmpi (optimget (options, "Updating", "on"), "on");
+  complexeqn = strcmpi (optimget (options, "ComplexEqn", "off"), "on");
+
+  ## Get scaling matrix using the TypicalX option. If set to "auto", the
+  ## scaling matrix is estimated using the Jacobian.
+  typicalx = optimget (options, "TypicalX");
+  if (isempty (typicalx))
+    typicalx = ones (n, 1);
+  endif
+  autoscale = strcmpi (optimget (options, "AutoScaling", "off"), "on");
+  if (! autoscale)
+    dg = 1 ./ typicalx;
+  endif
+
+  funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on");
+
+  if (funvalchk)
+    ## Replace fcn with a guarded version.
+    fcn = @(x) guarded_eval (fcn, x, complexeqn);
+  endif
+
+  ## These defaults are rather stringent. I think that normally, user
+  ## prefers accuracy to performance.
+
+  macheps = eps (class (x0));
+
+  tolx = optimget (options, "TolX", 1e-7);
+  tolf = optimget (options, "TolFun", 1e-7);
+
+  factor = 1;
+
+  niter = 1;
+  nfev = 1;
+
+  x = x0(:);
+  info = 0;
+
+  ## Initial evaluation.
+  ## Handle arbitrary shapes of x and f and remember them.
+  fvec = fcn (reshape (x, xsiz));
+  fsiz = size (fvec);
+  fvec = fvec(:);
+  fn = norm (fvec);
+  m = length (fvec);
+  n = length (x);
+
+  if (! isempty (outfcn))
+    optimvalues.iter = niter;
+    optimvalues.funccount = nfev;
+    optimvalues.fval = fn;
+    optimvalues.searchdirection = zeros (n, 1);
+    state = 'init';
+    stop = outfcn (x, optimvalues, state);
+    if (stop)
+      info = -1;
+      break;
+    endif
+  endif
+
+  nsuciter = 0;
+
+  ## Outer loop.
+  while (niter < maxiter && nfev < maxfev && ! info)
+
+    ## Calculate function value and Jacobian (possibly via FD).
+    if (has_jac)
+      [fvec, fjac] = fcn (reshape (x, xsiz));
+      ## If the Jacobian is sparse, disable Broyden updating.
+      if (issparse (fjac))
+        updating = false;
+      endif
+      fvec = fvec(:);
+      nfev ++;
+    else
+      fjac = __fdjac__ (fcn, reshape (x, xsiz), fvec, typicalx, cdif);
+      nfev += (1 + cdif) * length (x);
+    endif
+
+    ## For square and overdetermined systems, we update a QR
+    ## factorization of the Jacobian to avoid solving a full system in each
+    ## step. In this case, we pass a triangular matrix to __dogleg__.
+    useqr = updating && m >= n && n > 10;
+
+    if (useqr)
+      ## FIXME: Currently, pivoting is mostly useless because the \ operator
+      ## cannot exploit the resulting props of the triangular factor.
+      ## Unpivoted QR is significantly faster so it doesn't seem right to pivot
+      ## just to get invariance. Original MINPACK didn't pivot either, at least
+      ## when qr updating was used.
+      [q, r] = qr (fjac, 0);
+    endif
+
+    if (autoscale)
+      ## Get column norms, use them as scaling factors.
+      jcn = norm (fjac, 'columns').';
+      if (niter == 1)
+        dg = jcn;
+        dg(dg == 0) = 1;
+      else
+        ## Rescale adaptively.
+        ## FIXME: the original minpack used the following rescaling strategy:
+        ##   dg = max (dg, jcn);
+        ## but it seems not good if we start with a bad guess yielding Jacobian
+        ## columns with large norms that later decrease, because the corresponding
+        ## variable will still be overscaled. So instead, we only give the old
+        ## scaling a small momentum, but do not honor it.
+
+        dg = max (0.1*dg, jcn);
+      endif
+    endif
+
+    if (niter == 1)
+      xn = norm (dg .* x);
+      ## FIXME: something better?
+      delta = factor * max (xn, 1);
+    endif
+
+    ## It also seems that in the case of fast (and inhomogeneously) changing
+    ## Jacobian, the Broyden updates are of little use, so maybe we could
+    ## skip them if a big disproportional change is expected. The question is,
+    ## of course, how to define the above terms :)
+
+    lastratio = 0;
+    nfail = 0;
+    nsuc = 0;
+    decfac = 0.5;
+
+    ## Inner loop.
+    while (niter <= maxiter && nfev < maxfev && ! info)
+
+      ## Get trust-region model (dogleg) minimizer.
+      if (useqr)
+        qtf = q'*fvec;
+        s = - __dogleg__ (r, qtf, dg, delta);
+        w = qtf + r * s;
+      else
+        s = - __dogleg__ (fjac, fvec, dg, delta);
+        w = fvec + fjac * s;
+      endif
+
+      sn = norm (dg .* s);
+      if (niter == 1)
+        delta = min (delta, sn);
+      endif
+
+      fvec1 = fcn (reshape (x + s, xsiz)) (:);
+      fn1 = norm (fvec1);
+      nfev ++;
+
+      if (fn1 < fn)
+        ## Scaled actual reduction.
+        actred = 1 - (fn1/fn)^2;
+      else
+        actred = -1;
+      endif
+
+      ## Scaled predicted reduction, and ratio.
+      t = norm (w);
+      if (t < fn)
+        prered = 1 - (t/fn)^2;
+        ratio = actred / prered;
+      else
+        prered = 0;
+        ratio = 0;
+      endif
+
+      ## Update delta.
+      if (ratio < min(max(0.1, 0.8*lastratio), 0.9))
+        nsuc = 0;
+        nfail ++;
+        delta *= decfac;
+        decfac ^= 1.4142;
+        if (delta <= 1e1*macheps*xn)
+          ## Trust region became uselessly small.
+          info = -3;
+          break;
+        endif
+      else
+        lastratio = ratio;
+        decfac = 0.5;
+        nfail = 0;
+        nsuc ++;
+        if (abs (1-ratio) <= 0.1)
+          delta = 1.4142*sn;
+        elseif (ratio >= 0.5 || nsuc > 1)
+          delta = max (delta, 1.4142*sn);
+        endif
+      endif
+
+      if (ratio >= 1e-4)
+        ## Successful iteration.
+        x += s;
+        xn = norm (dg .* x);
+        fvec = fvec1;
+        fn = fn1;
+        nsuciter ++;
+      endif
+
+      niter ++;
+
+      ## FIXME: should outputfcn be only called after a successful iteration?
+      if (! isempty (outfcn))
+        optimvalues.iter = niter;
+        optimvalues.funccount = nfev;
+        optimvalues.fval = fn;
+        optimvalues.searchdirection = s;
+        state = 'iter';
+        stop = outfcn (x, optimvalues, state);
+        if (stop)
+          info = -1;
+          break;
+        endif
+      endif
+
+      ## Tests for termination conditions. A mysterious place, anything
+      ## can happen if you change something here...
+
+      ## The rule of thumb (which I'm not sure M*b is quite following)
+      ## is that for a tolerance that depends on scaling, only 0 makes
+      ## sense as a default value. But 0 usually means uselessly long
+      ## iterations, so we need scaling-independent tolerances wherever
+      ## possible.
+
+      ## FIXME -- why tolf*n*xn? If abs (e) ~ abs(x) * eps is a vector
+      ## of perturbations of x, then norm (fjac*e) <= eps*n*xn, i.e. by
+      ## tolf ~ eps we demand as much accuracy as we can expect.
+      if (fn <= tolf*n*xn)
+        info = 1;
+        ## The following tests done only after successful step.
+      elseif (ratio >= 1e-4)
+        ## This one is classic. Note that we use scaled variables again,
+        ## but compare to scaled step, so nothing bad.
+        if (sn <= tolx*xn)
+          info = 2;
+          ## Again a classic one. It seems weird to use the same tolf
+          ## for two different tests, but that's what M*b manual appears
+          ## to say.
+        elseif (actred < tolf)
+          info = 3;
+        endif
+      endif
+
+      ## Criterion for recalculating Jacobian.
+      if (! updating || nfail == 2 || nsuciter < 2)
+        break;
+      endif
+
+      ## Compute the scaled Broyden update.
+      if (useqr)
+        u = (fvec1 - q*w) / sn;
+        v = dg .* ((dg .* s) / sn);
+
+        ## Update the QR factorization.
+        [q, r] = qrupdate (q, r, u, v);
+      else
+        u = (fvec1 - w);
+        v = dg .* ((dg .* s) / sn);
+
+        ## update the Jacobian
+        fjac += u * v';
+      endif
+    endwhile
+  endwhile
+
+  ## Restore original shapes.
+  x = reshape (x, xsiz);
+  fvec = reshape (fvec, fsiz);
+
+  output.iterations = niter;
+  output.successful = nsuciter;
+  output.funcCount = nfev;
+
+endfunction
+
+## An assistant function that evaluates a function handle and checks for
+## bad results.
+function [fx, jx] = guarded_eval (fun, x, complexeqn)
+  if (nargout > 1)
+    [fx, jx] = fun (x);
+  else
+    fx = fun (x);
+    jx = [];
+  endif
+
+  if (! complexeqn && ! (isreal (fx) && isreal (jx)))
+    error ("fsolve:notreal", "fsolve: non-real value encountered");
+  elseif (complexeqn && ! (isnumeric (fx) && isnumeric(jx)))
+    error ("fsolve:notnum", "fsolve: non-numeric value encountered");
+  elseif (any (isnan (fx(:))))
+    error ("fsolve:isnan", "fsolve: NaN value encountered");
+  endif
+endfunction
+
+function [fx, jx] = make_fcn_jac (x, fcn, fjac)
+  fx = fcn (x);
+  if (nargout == 2)
+    jx = fjac (x);
+  endif
+endfunction
+
+%!function retval = __f (p)
+%!  x = p(1);
+%!  y = p(2);
+%!  z = p(3);
+%!  retval = zeros (3, 1);
+%!  retval(1) = sin(x) + y**2 + log(z) - 7;
+%!  retval(2) = 3*x + 2**y -z**3 + 1;
+%!  retval(3) = x + y + z - 5;
+%!endfunction
+%!test
+%! x_opt = [ 0.599054;
+%! 2.395931;
+%! 2.005014 ];
+%! tol = 1.0e-5;
+%! [x, fval, info] = fsolve (@__f, [ 0.5; 2.0; 2.5 ]);
+%! assert (info > 0);
+%! assert (norm (x - x_opt, Inf) < tol);
+%! assert (norm (fval) < tol);
+
+%!function retval = __f (p)
+%!  x = p(1);
+%!  y = p(2);
+%!  z = p(3);
+%!  w = p(4);
+%!  retval = zeros (4, 1);
+%!  retval(1) = 3*x + 4*y + exp (z + w) - 1.007;
+%!  retval(2) = 6*x - 4*y + exp (3*z + w) - 11;
+%!  retval(3) = x^4 - 4*y^2 + 6*z - 8*w - 20;
+%!  retval(4) = x^2 + 2*y^3 + z - w - 4;
+%!endfunction
+%!test
+%! x_opt = [ -0.767297326653401, 0.590671081117440, 1.47190018629642, -1.52719341133957 ];
+%! tol = 1.0e-5;
+%! [x, fval, info] = fsolve (@__f, [-1, 1, 2, -1]);
+%! assert (info > 0);
+%! assert (norm (x - x_opt, Inf) < tol);
+%! assert (norm (fval) < tol);
+
+%!function retval = __f (p)
+%!  x = p(1);
+%!  y = p(2);
+%!  z = p(3);
+%!  retval = zeros (3, 1);
+%!  retval(1) = sin(x) + y**2 + log(z) - 7;
+%!  retval(2) = 3*x + 2**y -z**3 + 1;
+%!  retval(3) = x + y + z - 5;
+%!  retval(4) = x*x + y - z*log(z) - 1.36;
+%!endfunction
+%!test
+%! x_opt = [ 0.599054;
+%! 2.395931;
+%! 2.005014 ];
+%! tol = 1.0e-5;
+%! [x, fval, info] = fsolve (@__f, [ 0.5; 2.0; 2.5 ]);
+%! assert (info > 0);
+%! assert (norm (x - x_opt, Inf) < tol);
+%! assert (norm (fval) < tol);
+
+%!function retval = __f (p)
+%!  x = p(1);
+%!  y = p(2);
+%!  z = p(3);
+%!  retval = zeros (3, 1);
+%!  retval(1) = sin(x) + y**2 + log(z) - 7;
+%!  retval(2) = 3*x + 2**y -z**3 + 1;
+%!  retval(3) = x + y + z - 5;
+%!endfunction
+%!test
+%! x_opt = [ 0.599054;
+%! 2.395931;
+%! 2.005014 ];
+%! tol = 1.0e-5;
+%! opt = optimset ("Updating", "qrp");
+%! [x, fval, info] = fsolve (@__f, [ 0.5; 2.0; 2.5 ], opt);
+%! assert (info > 0);
+%! assert (norm (x - x_opt, Inf) < tol);
+%! assert (norm (fval) < tol);
+
+%!test
+%! b0 = 3;
+%! a0 = 0.2;
+%! x = 0:.5:5;
+%! noise = 1e-5 * sin (100*x);
+%! y = exp (-a0*x) + b0 + noise;
+%! c_opt = [a0, b0];
+%! tol = 1e-5;
+%!
+%! [c, fval, info, output] =  fsolve (@(c) (exp(-c(1)*x) + c(2) - y), [0, 0]);
+%! assert (info > 0);
+%! assert (norm (c - c_opt, Inf) < tol);
+%! assert (norm (fval) < norm (noise));
+
+
+%!function y = cfun (x)
+%!  y(1) = (1+i)*x(1)^2 - (1-i)*x(2) - 2;
+%!  y(2) = sqrt (x(1)*x(2)) - (1-2i)*x(3) + (3-4i);
+%!  y(3) = x(1) * x(2) - x(3)^2 + (3+2i);
+%!endfunction
+
+%!test
+%! x_opt = [-1+i, 1-i, 2+i];
+%! x = [i, 1, 1+i];
+%!
+%! [x, f, info] = fsolve (@cfun, x, optimset ("ComplexEqn", "on"));
+%! tol = 1e-5;
+%! assert (norm (f) < tol);
+%! assert (norm (x - x_opt, Inf) < tol);
+
+## Solve the double dogleg trust-region least-squares problem:
+## Minimize norm(r*x-b) subject to the constraint norm(d.*x) <= delta,
+## x being a convex combination of the gauss-newton and scaled gradient.
+
+## TODO: error checks
+## TODO: handle singularity, or leave it up to mldivide?
+
+function x = __dogleg__ (r, b, d, delta)
+  ## Get Gauss-Newton direction.
+  x = r \ b;
+  xn = norm (d .* x);
+  if (xn > delta)
+    ## GN is too big, get scaled gradient.
+    s = (r' * b) ./ d;
+    sn = norm (s);
+    if (sn > 0)
+      ## Normalize and rescale.
+      s = (s / sn) ./ d;
+      ## Get the line minimizer in s direction.
+      tn = norm (r*s);
+      snm = (sn / tn) / tn;
+      if (snm < delta)
+        ## Get the dogleg path minimizer.
+        bn = norm (b);
+        dxn = delta/xn; snmd = snm/delta;
+        t = (bn/sn) * (bn/xn) * snmd;
+        t -= dxn * snmd^2 - sqrt ((t-dxn)^2 + (1-dxn^2)*(1-snmd^2));
+        alpha = dxn*(1-snmd^2) / t;
+      else
+        alpha = 0;
+      endif
+    else
+      alpha = delta / xn;
+      snm = 0;
+    endif
+    ## Form the appropriate convex combination.
+    x = alpha * x + ((1-alpha) * min (snm, delta)) * s;
+  endif
+endfunction
+