]> Creatis software - CreaPhase.git/blobdiff - octave_packages/m/optimization/fzero.m
update packages
[CreaPhase.git] / octave_packages / m / optimization / fzero.m
diff --git a/octave_packages/m/optimization/fzero.m b/octave_packages/m/optimization/fzero.m
new file mode 100644 (file)
index 0000000..8a3e9b6
--- /dev/null
@@ -0,0 +1,363 @@
+## Copyright (C) 2008-2012 VZLU Prague, a.s.
+##
+## This file is part of Octave.
+##
+## Octave is free software; you can redistribute it and/or modify it
+## under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 3 of the License, or (at
+## your option) any later version.
+##
+## Octave is distributed in the hope that it will be useful, but
+## WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+## General Public License for more details.
+##
+## You should have received a copy of the GNU General Public License
+## along with Octave; see the file COPYING.  If not, see
+## <http://www.gnu.org/licenses/>.
+##
+## Author: Jaroslav Hajek <highegg@gmail.com>
+
+## -*- texinfo -*-
+## @deftypefn  {Function File} {} fzero (@var{fun}, @var{x0})
+## @deftypefnx {Function File} {} fzero (@var{fun}, @var{x0}, @var{options})
+## @deftypefnx {Function File} {[@var{x}, @var{fval}, @var{info}, @var{output}] =} fzero (@dots{})
+## Find a zero of a univariate function.
+##
+## @var{fun} is a function handle, inline function, or string
+## containing the name of the function to evaluate.
+## @var{x0} should be a two-element vector specifying two points which
+## bracket a zero.  In other words, there must be a change in sign of the
+## function between @var{x0}(1) and @var{x0}(2).  More mathematically, the
+## following must hold
+##
+## @example
+## sign (@var{fun}(@var{x0}(1))) * sign (@var{fun}(@var{x0}(2))) <= 0
+## @end example
+##
+## If @var{x0} is a single scalar then several nearby and distant
+## values are probed in an attempt to obtain a valid bracketing.  If this
+## is not successful, the function fails.
+## @var{options} is a structure specifying additional options.
+## Currently, @code{fzero}
+## recognizes these options: @code{"FunValCheck"}, @code{"OutputFcn"},
+## @code{"TolX"}, @code{"MaxIter"}, @code{"MaxFunEvals"}.
+## For a description of these options, see @ref{doc-optimset,,optimset}.
+##
+## On exit, the function returns @var{x}, the approximate zero point
+## and @var{fval}, the function value thereof.
+## @var{info} is an exit flag that can have these values:
+##
+## @itemize
+## @item 1
+##  The algorithm converged to a solution.
+##
+## @item 0
+##  Maximum number of iterations or function evaluations has been reached.
+##
+## @item -1
+## The algorithm has been terminated from user output function.
+##
+## @item -5
+## The algorithm may have converged to a singular point.
+## @end itemize
+##
+## @var{output} is a structure containing runtime information about the
+## @code{fzero} algorithm.  Fields in the structure are:
+##
+## @itemize
+## @item iterations
+##  Number of iterations through loop.
+##
+## @item nfev
+##  Number of function evaluations.
+##
+## @item bracketx
+##  A two-element vector with the final bracketing of the zero along the x-axis.
+##
+## @item brackety
+##  A two-element vector with the final bracketing of the zero along the y-axis.
+## @end itemize
+## @seealso{optimset, fsolve}
+## @end deftypefn
+
+## This is essentially the ACM algorithm 748: Enclosing Zeros of
+## Continuous Functions due to Alefeld, Potra and Shi, ACM Transactions
+## on Mathematical Software, Vol. 21, No. 3, September 1995. Although
+## the workflow should be the same, the structure of the algorithm has
+## been transformed non-trivially; instead of the authors' approach of
+## sequentially calling building blocks subprograms we implement here a
+## FSM version using one interior point determination and one bracketing
+## per iteration, thus reducing the number of temporary variables and
+## simplifying the algorithm structure. Further, this approach reduces
+## the need for external functions and error handling. The algorithm has
+## also been slightly modified.
+
+## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
+## PKG_ADD: [~] = __all_opts__ ("fzero");
+
+function [x, fval, info, output] = fzero (fun, x0, options = struct ())
+
+  ## Get default options if requested.
+  if (nargin == 1 && ischar (fun) && strcmp (fun, 'defaults'))
+    x = optimset ("MaxIter", Inf, "MaxFunEvals", Inf, "TolX", 1e-8, \
+    "OutputFcn", [], "FunValCheck", "off");
+    return;
+  endif
+
+  if (nargin < 2 || nargin > 3)
+    print_usage ();
+  endif
+
+  if (ischar (fun))
+    fun = str2func (fun, "global");
+  endif
+
+  ## TODO
+  ## displev = optimget (options, "Display", "notify");
+  funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on");
+  outfcn = optimget (options, "OutputFcn");
+  tolx = optimget (options, "TolX", 1e-8);
+  maxiter = optimget (options, "MaxIter", Inf);
+  maxfev = optimget (options, "MaxFunEvals", Inf);
+
+  persistent mu = 0.5;
+
+  if (funvalchk)
+    ## Replace fun with a guarded version.
+    fun = @(x) guarded_eval (fun, x);
+  endif
+
+  ## The default exit flag if exceeded number of iterations.
+  info = 0;
+  niter = 0;
+  nfev = 0;
+
+  x = fval = a = fa = b = fb = NaN;
+  eps = eps (class (x0));
+
+  ## Prepare...
+  a = x0(1);
+  fa = fun (a);
+  nfev = 1;
+  if (length (x0) > 1)
+    b = x0(2);
+    fb = fun (b);
+    nfev += 1;
+  else
+    ## Try to get b.
+    if (a == 0)
+      aa = 1;
+    else
+      aa = a;
+    endif
+    for b = [0.9*aa, 1.1*aa, aa-1, aa+1, 0.5*aa 1.5*aa, -aa, 2*aa, -10*aa, 10*aa]
+      fb = fun (b); nfev += 1;
+      if (sign (fa) * sign (fb) <= 0)
+        break;
+      endif
+    endfor
+  endif
+
+  if (b < a)
+    u = a;
+    a = b;
+    b = u;
+
+    fu = fa;
+    fa = fb;
+    fb = fu;
+  endif
+
+  if (! (sign (fa) * sign (fb) <= 0))
+    error ("fzero:bracket", "fzero: not a valid initial bracketing");
+  endif
+
+  slope0 = (fb - fa) / (b - a);
+
+  if (fa == 0)
+    b = a;
+    fb = fa;
+  elseif (fb == 0)
+    a = b;
+    fa = fb;
+  endif
+
+  itype = 1;
+
+  if (abs (fa) < abs (fb))
+    u = a; fu = fa;
+  else
+    u = b; fu = fb;
+  endif
+
+  d = e = u;
+  fd = fe = fu;
+  mba = mu*(b - a);
+  while (niter < maxiter && nfev < maxfev)
+    switch (itype)
+    case 1
+      ## The initial test.
+      if (b - a <= 2*(2 * abs (u) * eps + tolx))
+        x = u; fval = fu;
+        info = 1;
+        break;
+      endif
+      if (abs (fa) <= 1e3*abs (fb) && abs (fb) <= 1e3*abs (fa))
+        ## Secant step.
+        c = u - (a - b) / (fa - fb) * fu;
+      else
+        ## Bisection step.
+        c = 0.5*(a + b);
+      endif
+      d = u; fd = fu;
+      itype = 5;
+    case {2, 3}
+      l = length (unique ([fa, fb, fd, fe]));
+      if (l == 4)
+        ## Inverse cubic interpolation.
+        q11 = (d - e) * fd / (fe - fd);
+        q21 = (b - d) * fb / (fd - fb);
+        q31 = (a - b) * fa / (fb - fa);
+        d21 = (b - d) * fd / (fd - fb);
+        d31 = (a - b) * fb / (fb - fa);
+        q22 = (d21 - q11) * fb / (fe - fb);
+        q32 = (d31 - q21) * fa / (fd - fa);
+        d32 = (d31 - q21) * fd / (fd - fa);
+        q33 = (d32 - q22) * fa / (fe - fa);
+        c = a + q31 + q32 + q33;
+      endif
+      if (l < 4 || sign (c - a) * sign (c - b) > 0)
+        ## Quadratic interpolation + newton.
+        a0 = fa;
+        a1 = (fb - fa)/(b - a);
+        a2 = ((fd - fb)/(d - b) - a1) / (d - a);
+        ## Modification 1: this is simpler and does not seem to be worse.
+        c = a - a0/a1;
+        if (a2 != 0)
+          c = a - a0/a1;
+          for i = 1:itype
+            pc = a0 + (a1 + a2*(c - b))*(c - a);
+            pdc = a1 + a2*(2*c - a - b);
+            if (pdc == 0)
+              c = a - a0/a1;
+              break;
+            endif
+            c -= pc/pdc;
+          endfor
+        endif
+      endif
+      itype += 1;
+    case 4
+      ## Double secant step.
+      c = u - 2*(b - a)/(fb - fa)*fu;
+      ## Bisect if too far.
+      if (abs (c - u) > 0.5*(b - a))
+        c = 0.5 * (b + a);
+      endif
+      itype = 5;
+    case 5
+      ## Bisection step.
+      c = 0.5 * (b + a);
+      itype = 2;
+    endswitch
+
+    ## Don't let c come too close to a or b.
+    delta = 2*0.7*(2 * abs (u) * eps + tolx);
+    if ((b - a) <= 2*delta)
+      c = (a + b)/2;
+    else
+      c = max (a + delta, min (b - delta, c));
+    endif
+
+    ## Calculate new point.
+    x = c;
+    fval = fc = fun (c);
+    niter ++; nfev ++;
+
+    ## Modification 2: skip inverse cubic interpolation if
+    ## nonmonotonicity is detected.
+    if (sign (fc - fa) * sign (fc - fb) >= 0)
+      ## The new point broke monotonicity.
+      ## Disable inverse cubic.
+      fe = fc;
+    else
+      e = d; fe = fd;
+    endif
+
+    ## Bracketing.
+    if (sign (fa) * sign (fc) < 0)
+      d = b; fd = fb;
+      b = c; fb = fc;
+    elseif (sign (fb) * sign (fc) < 0)
+      d = a; fd = fa;
+      a = c; fa = fc;
+    elseif (fc == 0)
+      a = b = c; fa = fb = fc;
+      info = 1;
+      break;
+    else
+      ## This should never happen.
+      error ("fzero:bracket", "fzero: zero point is not bracketed");
+    endif
+
+    ## If there's an output function, use it now.
+    if (outfcn)
+      optv.funccount = nfev;
+      optv.fval = fval;
+      optv.iteration = niter;
+      if (outfcn (x, optv, "iter"))
+        info = -1;
+        break;
+      endif
+    endif
+
+    if (abs (fa) < abs (fb))
+      u = a; fu = fa;
+    else
+      u = b; fu = fb;
+    endif
+    if (b - a <= 2*(2 * abs (u) * eps + tolx))
+      info = 1;
+      break;
+    endif
+
+    ## Skip bisection step if successful reduction.
+    if (itype == 5 && (b - a) <= mba)
+      itype = 2;
+    endif
+    if (itype == 2)
+      mba = mu * (b - a);
+    endif
+  endwhile
+
+  ## Check solution for a singularity by examining slope
+  if (info == 1)
+    if ((b - a) != 0 && abs ((fb - fa)/(b - a) / slope0) > max (1e6, 0.5/(eps+tolx)))
+      info = -5;
+    endif
+  endif
+
+  output.iterations = niter;
+  output.funcCount = nfev;
+  output.bracketx = [a, b];
+  output.brackety = [fa, fb];
+
+endfunction
+
+## An assistant function that evaluates a function handle and checks for
+## bad results.
+function fx = guarded_eval (fun, x)
+  fx = fun (x);
+  fx = fx(1);
+  if (! isreal (fx))
+    error ("fzero:notreal", "fzero: non-real value encountered");
+  elseif (isnan (fx))
+    error ("fzero:isnan", "fzero: NaN value encountered");
+  endif
+endfunction
+
+%!shared opt0
+%! opt0 = optimset ("tolx", 0);
+%!assert(fzero(@cos, [0, 3], opt0), pi/2, 10*eps)
+%!assert(fzero(@(x) x^(1/3) - 1e-8, [0,1], opt0), 1e-24, 1e-22*eps)