]> Creatis software - CreaPhase.git/blobdiff - octave_packages/m/testfun/speed.m
update packages
[CreaPhase.git] / octave_packages / m / testfun / speed.m
diff --git a/octave_packages/m/testfun/speed.m b/octave_packages/m/testfun/speed.m
new file mode 100644 (file)
index 0000000..22b23f3
--- /dev/null
@@ -0,0 +1,444 @@
+## Copyright (C) 2000-2012 Paul Kienzle
+##
+## This file is part of Octave.
+##
+## Octave is free software; you can redistribute it and/or modify it
+## under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 3 of the License, or (at
+## your option) any later version.
+##
+## Octave is distributed in the hope that it will be useful, but
+## WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+## General Public License for more details.
+##
+## You should have received a copy of the GNU General Public License
+## along with Octave; see the file COPYING.  If not, see
+## <http://www.gnu.org/licenses/>.
+
+## -*- texinfo -*-
+## @deftypefn  {Function File} {} speed (@var{f}, @var{init}, @var{max_n}, @var{f2}, @var{tol})
+## @deftypefnx {Function File} {[@var{order}, @var{n}, @var{T_f}, @var{T_f2}] =} speed (@dots{})
+##
+## Determine the execution time of an expression (@var{f}) for various input
+## values (@var{n}).  The @var{n} are log-spaced from 1 to @var{max_n}.  For
+## each @var{n}, an initialization expression (@var{init}) is computed to
+## create any data needed for the test.  If a second expression (@var{f2}) is
+## given then the execution times of the two expressions are compared.  When
+## called without output arguments the results are printed to stdout and
+## displayed graphically.
+##
+## @table @code
+## @item @var{f}
+## The code expression to evaluate.
+##
+## @item @var{max_n}
+## The maximum test length to run.  The default value is 100.  Alternatively,
+## use @code{[min_n, max_n]} or specify the @var{n} exactly with
+## @code{[n1, n2, @dots{}, nk]}.
+##
+## @item @var{init}
+## Initialization expression for function argument values.  Use @var{k}
+## for the test number and @var{n} for the size of the test.  This should
+## compute values for all variables used by @var{f}.  Note that @var{init} will
+## be evaluated first for @math{k = 0}, so things which are constant throughout
+## the test series can be computed once.  The default value is
+## @code{@var{x} = randn (@var{n}, 1)}.
+##
+## @item @var{f2}
+## An alternative expression to evaluate, so that the speed of two
+## expressions can be directly compared.  The default is @code{[]}.
+##
+## @item @var{tol}
+## Tolerance used to compare the results of expression @var{f} and expression
+## @var{f2}.  If @var{tol} is positive, the tolerance is an absolute one.
+## If @var{tol} is negative, the tolerance is a relative one.  The default is
+## @code{eps}.  If @var{tol} is @code{Inf}, then no comparison will be made.
+##
+## @item @var{order}
+## The time complexity of the expression @math{O(a*n^p)}.  This
+## is a structure with fields @code{a} and @code{p}.
+##
+## @item @var{n}
+## The values @var{n} for which the expression was calculated @strong{AND}
+## the execution time was greater than zero.
+##
+## @item @var{T_f}
+## The nonzero execution times recorded for the expression @var{f} in seconds.
+##
+## @item @var{T_f2}
+## The nonzero execution times recorded for the expression @var{f2} in seconds.
+## If required, the mean time ratio is simply @code{mean (T_f ./ T_f2)}.
+##
+## @end table
+##
+## The slope of the execution time graph shows the approximate
+## power of the asymptotic running time @math{O(n^p)}.  This
+## power is plotted for the region over which it is approximated
+## (the latter half of the graph).  The estimated power is not
+## very accurate, but should be sufficient to determine the
+## general order of an algorithm.  It should indicate if, for
+## example, the implementation is unexpectedly @math{O(n^2)}
+## rather than @math{O(n)} because it extends a vector each
+## time through the loop rather than pre-allocating storage.
+## In the current version of Octave, the following is not the
+## expected @math{O(n)}.
+##
+## @example
+## speed ("for i = 1:n, y@{i@} = x(i); endfor", "", [1000, 10000])
+## @end example
+##
+## @noindent
+## But it is if you preallocate the cell array @code{y}:
+##
+## @example
+## @group
+## speed ("for i = 1:n, y@{i@} = x(i); endfor", ...
+##        "x = rand (n, 1); y = cell (size (x));", [1000, 10000])
+## @end group
+## @end example
+##
+## An attempt is made to approximate the cost of individual
+## operations, but it is wildly inaccurate.  You can improve the
+## stability somewhat by doing more work for each @code{n}.  For
+## example:
+##
+## @example
+## speed ("airy(x)", "x = rand (n, 10)", [10000, 100000])
+## @end example
+##
+## When comparing two different expressions (@var{f}, @var{f2}), the slope
+## of the line on the speedup ratio graph should be larger than 1 if the new
+## expression is faster.  Better algorithms have a shallow slope.  Generally,
+## vectorizing an algorithm will not change the slope of the execution
+## time graph, but will shift it relative to the original.  For
+## example:
+##
+## @example
+## @group
+## speed ("sum (x)", "", [10000, 100000], ...
+##        "v = 0; for i = 1:length (x), v += x(i); endfor")
+## @end group
+## @end example
+##
+## The following is a more complex example.  If there was an original version
+## of @code{xcorr} using for loops and a second version using an FFT, then
+## one could compare the run speed for various lags as follows, or for a fixed
+## lag with varying vector lengths as follows:
+##
+## @example
+## @group
+## speed ("xcorr (x, n)", "x = rand (128, 1);", 100,
+##        "xcorr_orig (x, n)", -100*eps)
+## speed ("xcorr (x, 15)", "x = rand (20+n, 1);", 100,
+##        "xcorr_orig (x, n)", -100*eps)
+## @end group
+## @end example
+##
+## Assuming one of the two versions is in xcorr_orig, this
+## would compare their speed and their output values.  Note that the
+## FFT version is not exact, so one must specify an acceptable tolerance on
+## the comparison @code{100*eps}.  In this case, the comparison should be
+## computed relatively, as @code{abs ((@var{x} - @var{y}) ./ @var{y})} rather
+## than absolutely as @code{abs (@var{x} - @var{y})}.
+##
+## Type @kbd{example ("speed")} to see some real examples or 
+## @kbd{demo ("speed")} to run them.
+## @end deftypefn
+
+## FIXME: consider two dimensional speedup surfaces for functions like kron.
+function [__order, __test_n, __tnew, __torig] = speed (__f1, __init, __max_n = 100, __f2 = "", __tol = eps)
+
+  if (nargin < 1 || nargin > 6)
+    print_usage ();
+  endif
+
+  if (nargin < 2 || isempty (__init))
+    __init = "x = randn (n, 1)";
+  endif
+
+  if (isempty (__max_n))
+    __max_n = 100;
+  endif
+
+  __numtests = 15;
+
+  ## Let user specify range of n.
+  if (isscalar (__max_n))
+    __min_n = 1;
+    assert (__max_n > __min_n);
+    __test_n = logspace (0, log10 (__max_n), __numtests);
+  elseif (length (__max_n) == 2)
+    [__min_n, __max_n] = deal (__max_n(1), __max_n(2));
+    assert (__min_n >= 1);
+    assert (__max_n > __min_n);
+    __test_n = logspace (log10 (__min_n), log10 (__max_n), __numtests);
+  else
+    assert (all (__max_n > 0));
+    __test_n = __max_n;
+  endif
+  ## Force n to be an integer.
+  __test_n = unique (round (__test_n));
+  assert (__test_n >= 1);
+
+  __torig = __tnew = zeros (size (__test_n));
+
+  ## Print and plot the data if no output is requested.
+  do_display = (nargout == 0);
+
+  if (do_display)
+    disp (cstrcat ("testing ", __f1, "\ninit: ", __init));
+  endif
+
+  ## Add semicolon closure to all code fragments in case user has not done so.
+  __init = cstrcat (__init, ";");
+  __f1 = cstrcat (__f1, ";");
+  if (! isempty (__f2))
+    __f2 = cstrcat (__f2, ";");
+  endif
+
+  ## Make sure the functions are freshly loaded by evaluating them at
+  ## test_n(1); first have to initialize the args though.
+  n = 1;
+  k = 0;
+  eval (__init);
+  eval (__f1);
+  if (! isempty (__f2))
+    eval (__f2);
+  endif
+
+  ## Run the tests.
+  for k = 1:length (__test_n)
+    n = __test_n(k);
+    eval (__init);
+
+    if (do_display)
+      printf ("n%i = %i  ", k, n);
+      fflush (stdout);
+    endif
+
+    eval (cstrcat ("__t = time();", __f1, "__v1=ans; __t = time()-__t;"));
+    if (__t < 0.25)
+      eval (cstrcat ("__t2 = time();", __f1, "__t2 = time()-__t2;"));
+      eval (cstrcat ("__t3 = time();", __f1, "__t3 = time()-__t3;"));
+      __t = min ([__t, __t2, __t3]);
+    endif
+    __tnew(k) = __t;
+
+    if (! isempty (__f2))
+      eval (cstrcat ("__t = time();", __f2, "__v2=ans; __t = time()-__t;"));
+      if (__t < 0.25)
+        eval (cstrcat ("__t2 = time();", __f2, "__t2 = time()-__t2;"));
+        eval (cstrcat ("__t3 = time();", __f2, "__t3 = time()-__t3;"));
+        __t = min ([__t, __t2, __t3]);
+      endif
+      __torig(k) = __t;
+      if (! isinf(__tol))
+        assert (__v1, __v2, __tol);
+      endif
+    endif
+
+  endfor
+
+  ## Drop times of zero.
+  if (isempty (__f2))
+    zidx = (__tnew < 100*eps);
+    __test_n(zidx) = [];
+    __tnew(zidx) = [];
+  else
+    zidx = (__tnew < 100*eps | __torig < 100*eps);
+    __test_n(zidx) = [];
+    __tnew(zidx) = [];
+    __torig(zidx) = [];
+  endif
+
+  if (isempty (__test_n))
+    error (["speed: All running times were zero.\n",
+            "error: speed: Choose larger MAX_N or do more work per function evaluation"]);
+  endif
+
+  ## Approximate time complexity and return it if requested.
+  tailidx = ceil (length (__test_n)/2):length (__test_n);
+  p = polyfit (log (__test_n(tailidx)), log (__tnew(tailidx)), 1);
+  if (nargout > 0)
+    __order.p = p(1);
+    __order.a = exp (p(2));
+  endif
+
+  if (do_display)
+    figure;
+    ## Strip semicolon added to code fragments before displaying
+    __init(end) = ""; 
+    __f1(end) = ""; 
+    if (! isempty (__f2))
+      __f2(end) = ""; 
+    endif
+  endif
+
+  if (do_display && isempty (__f2))
+
+    loglog (__test_n, __tnew*1000, "*-g;execution time;");
+    xlabel ("test length");
+    ylabel ("best execution time (ms)");
+    title ({__f1, cstrcat("init: ", __init)});
+
+  elseif (do_display)
+
+    subplot (1, 2, 1);
+    semilogx (__test_n, __torig./__tnew,
+              cstrcat ("-*r;", strrep (__f1, ";", "."), " / ",
+                       strrep (__f2, ";", "."), ";"),
+               __test_n, __tnew./__torig,
+              cstrcat ("-*g;", strrep (__f2, ";", "."), " / ",
+                       strrep (__f1, ";", "."), ";"));
+    title ("Speedup Ratio");
+    xlabel ("test length");
+    ylabel ("speedup ratio");
+
+    subplot (1, 2, 2);
+    loglog (__test_n, __tnew*1000,
+            cstrcat ("*-g;", strrep (__f1, ";", "."), ";"),
+            __test_n, __torig*1000,
+            cstrcat ("*-r;", strrep (__f2,";","."), ";"));
+    title ({"Execution Times", cstrcat("init: ", __init)});
+    xlabel ("test length");
+    ylabel ("best execution time (ms)");
+
+    ratio = mean (__torig ./ __tnew);
+    printf ("\n\nMean runtime ratio = %.3g for '%s' vs '%s'\n",
+            ratio, __f2, __f1);
+
+  endif
+
+  if (do_display)
+
+    ## Plot time complexity approximation (using milliseconds).
+    figure;   # Open second plot window
+
+    order = round (10*p(1))/10;
+    if (order >= 0.1)
+      order = sprintf ("O(n^%g)", order);
+    else
+      order = "O(1)";
+    endif
+    v = polyval (p, log (__test_n(tailidx)));
+
+    loglog (__test_n(tailidx), exp(v)*1000, sprintf ("b;%s;", order));
+    title ({"Time Complexity", __f1});
+    xlabel ("test length");
+
+    ## Get base time to 1 digit of accuracy.
+    dt = exp (p(2));
+    dt = floor (dt/10^floor(log10(dt)))*10^floor(log10(dt));
+    if (log10 (dt) >= -0.5)
+      time = sprintf ("%g s", dt);
+    elseif (log10 (dt) >= -3.5)
+      time = sprintf ("%g ms", dt*1e3);
+    elseif (log10 (dt) >= -6.5)
+      time = sprintf ("%g us", dt*1e6);
+    else
+      time = sprintf ("%g ns", dt*1e9);
+    endif
+
+    ## Display nicely formatted complexity.
+    printf ("\nFor %s:\n", __f1);
+    printf ("  asymptotic power: %s\n", order);
+    printf ("  approximate time per operation: %s\n", time);
+
+  endif
+
+endfunction
+
+
+%% FIXME: Demos with declared functions do not work.  See bug #31815.
+%%        A workaround has been hacked by not declaring the functions
+%%        but using eval to create them in the proper context.
+%%        Unfortunately, we can't remove them from the user's workspace
+%%        because of another bug (#34497).
+%!demo
+%!  fstr_build_orig = cstrcat (
+%!  "function x = build_orig (n)\n",
+%!  "  ## extend the target vector on the fly\n",
+%!  "  for i=0:n-1, x([1:100]+i*100) = 1:100; endfor\n",
+%!  "endfunction");
+%!  fstr_build = cstrcat (
+%!  "function x = build (n)\n",
+%!  "  ## preallocate the target vector\n",
+%!  "  x = zeros (1, n*100);\n",
+%!  "  for i=0:n-1, x([1:100]+i*100) = 1:100; endfor\n",
+%!  "endfunction");
+%!
+%!  disp ("-----------------------");
+%!  disp (fstr_build_orig);
+%!  disp ("-----------------------");
+%!  disp (fstr_build);
+%!  disp ("-----------------------");
+%!
+%!  ## Eval functions strings to create them in the current context
+%!  eval (fstr_build_orig);
+%!  eval (fstr_build);
+%!
+%!  disp ("Preallocated vector test.\nThis takes a little while...");
+%!  speed("build (n)", "", 1000, "build_orig (n)");
+%!  clear -f build build_orig
+%!  disp ("Note how much faster it is to pre-allocate a vector.");
+%!  disp ("Notice the peak speedup ratio.");
+
+%!demo
+%!  fstr_build_orig = cstrcat (
+%!  "function x = build_orig (n)\n",
+%!  "  for i=0:n-1, x([1:100]+i*100) = 1:100; endfor\n",
+%!  "endfunction");
+%!  fstr_build = cstrcat (
+%!  "function x = build (n)\n",
+%!  "  idx = [1:100]';\n",
+%!  "  x = idx(:,ones(1,n));\n",
+%!  "  x = reshape (x, 1, n*100);\n",
+%!  "endfunction");
+%!
+%!  disp ("-----------------------");
+%!  disp (fstr_build_orig);
+%!  disp ("-----------------------");
+%!  disp (fstr_build);
+%!  disp ("-----------------------");
+%!
+%!  ## Eval functions strings to create them in the current context
+%!  eval (fstr_build_orig);
+%!  eval (fstr_build);
+%!
+%!  disp ("Vectorized test.\nThis takes a little while...");
+%!  speed("build (n)", "", 1000, "build_orig (n)");
+%!  clear -f build build_orig
+%!  disp ("-----------------------");
+%!  disp ("This time, the for loop is done away with entirely.");
+%!  disp ("Notice how much bigger the speedup is than in example 1.");
+
+%!test
+%! [order, n, T_f1, T_f2] = speed ("airy (x)", "x = rand (n, 10)", [100, 1000]);
+%! assert (isstruct (order));
+%! assert (size (order), [1, 1]);
+%! assert (fieldnames (order), {"p"; "a"});
+%! assert (isnumeric (n));
+%! assert (length (n) > 10);
+%! assert (isnumeric (T_f1));
+%! assert (size (T_f1), size (n));
+%! assert (isnumeric (T_f2));
+%! assert (length (T_f2) > 10);
+
+%% This test is known to fail on operating systems with low resolution timers such as MinGW
+%!xtest
+%! [order, n, T_f1, T_f2] = speed ("sum (x)", "", [100, 1000], "v = 0; for i = 1:length (x), v += x(i); endfor");
+%! assert (isstruct (order));
+%! assert (size (order), [1, 1]);
+%! assert (fieldnames (order), {"p"; "a"});
+%! assert (isnumeric (n));
+%! assert (length (n) > 10);
+%! assert (isnumeric (T_f1));
+%! assert (size (T_f1), size (n));
+%! assert (isnumeric (T_f2));
+%! assert (length (T_f2) > 10);
+
+%% Test input validation
+%!error speed ();
+%!error speed (1, 2, 3, 4, 5, 6, 7);
+