]> Creatis software - CreaPhase.git/blobdiff - octave_packages/optim-1.2.0/polyconf.m
Add a useful package (from Source forge) for octave
[CreaPhase.git] / octave_packages / optim-1.2.0 / polyconf.m
diff --git a/octave_packages/optim-1.2.0/polyconf.m b/octave_packages/optim-1.2.0/polyconf.m
new file mode 100644 (file)
index 0000000..b93f643
--- /dev/null
@@ -0,0 +1,140 @@
+## Author: Paul Kienzle <pkienzle@gmail.com>
+## This program is granted to the public domain.
+
+## [y,dy] = polyconf(p,x,s)
+##
+##   Produce prediction intervals for the fitted y. The vector p 
+##   and structure s are returned from polyfit or wpolyfit. The 
+##   x values are where you want to compute the prediction interval.
+##
+## polyconf(...,['ci'|'pi'])
+##
+##   Produce a confidence interval (range of likely values for the
+##   mean at x) or a prediction interval (range of likely values 
+##   seen when measuring at x).  The prediction interval tells
+##   you the width of the distribution at x.  This should be the same
+##   regardless of the number of measurements you have for the value
+##   at x.  The confidence interval tells you how well you know the
+##   mean at x.  It should get smaller as you increase the number of
+##   measurements.  Error bars in the physical sciences usually show 
+##   a 1-alpha confidence value of erfc(1/sqrt(2)), representing
+##   one standandard deviation of uncertainty in the mean.
+##
+## polyconf(...,1-alpha)
+##
+##   Control the width of the interval. If asking for the prediction
+##   interval 'pi', the default is .05 for the 95% prediction interval.
+##   If asking for the confidence interval 'ci', the default is
+##   erfc(1/sqrt(2)) for a one standard deviation confidence interval.
+##
+## Example:
+##  [p,s] = polyfit(x,y,1);
+##  xf = linspace(x(1),x(end),150);
+##  [yf,dyf] = polyconf(p,xf,s,'ci');
+##  plot(xf,yf,'g-;fit;',xf,yf+dyf,'g.;;',xf,yf-dyf,'g.;;',x,y,'xr;data;');
+##  plot(x,y-polyval(p,x),';residuals;',xf,dyf,'g-;;',xf,-dyf,'g-;;');
+
+function [y,dy] = polyconf(p,x,varargin)
+  alpha = s = [];
+  typestr = 'pi';
+  for i=1:length(varargin)
+    v = varargin{i};
+    if isstruct(v), s = v;
+    elseif ischar(v), typestr = v;
+    elseif isscalar(v), alpha = v;
+    else s = [];
+    end
+  end
+  if (nargout>1 && (isempty(s)||nargin<3)) || nargin < 2
+    print_usage;
+  end
+
+  if isempty(s)
+    y = polyval(p,x);
+
+  else
+    ## For a polynomial fit, x is the set of powers ( x^n ; ... ; 1 ).
+    n=length(p)-1;
+    k=length(x(:));
+    if columns(s.R) == n, ## fit through origin
+      A = (x(:) * ones (1, n)) .^ (ones (k, 1) * (n:-1:1));
+      p = p(1:n);
+    else
+      A = (x(:) * ones (1, n+1)) .^ (ones (k, 1) * (n:-1:0));
+    endif
+    y = dy = x;
+    [y(:),dy(:)] = confidence(A,p,s,alpha,typestr);
+
+  end
+end
+
+%!test
+%! # data from Hocking, RR, "Methods and Applications of Linear Models"
+%! temperature=[40;40;40;45;45;45;50;50;50;55;55;55;60;60;60;65;65;65];
+%! strength=[66.3;64.84;64.36;69.70;66.26;72.06;73.23;71.4;68.85;75.78;72.57;76.64;78.87;77.37;75.94;78.82;77.13;77.09];
+%! [p,s] = polyfit(temperature,strength,1);
+%! [y,dy] = polyconf(p,40,s,0.05,'ci');
+%! assert([y,dy],[66.15396825396826,1.71702862681486],200*eps);
+%! [y,dy] = polyconf(p,40,s,0.05,'pi');
+%! assert(dy,4.45345484470743,200*eps);
+
+## [y,dy] = confidence(A,p,s)
+##
+##   Produce prediction intervals for the fitted y. The vector p
+##   and structure s are returned from wsolve. The matrix A is
+##   the set of observation values at which to evaluate the
+##   confidence interval.
+##
+## confidence(...,['ci'|'pi'])
+##
+##   Produce a confidence interval (range of likely values for the
+##   mean at x) or a prediction interval (range of likely values 
+##   seen when measuring at x).  The prediction interval tells
+##   you the width of the distribution at x.  This should be the same
+##   regardless of the number of measurements you have for the value
+##   at x.  The confidence interval tells you how well you know the
+##   mean at x.  It should get smaller as you increase the number of
+##   measurements.  Error bars in the physical sciences usually show 
+##   a 1-alpha confidence value of erfc(1/sqrt(2)), representing
+##   one standandard deviation of uncertainty in the mean.
+##
+## confidence(...,1-alpha)
+##
+##   Control the width of the interval. If asking for the prediction
+##   interval 'pi', the default is .05 for the 95% prediction interval.
+##   If asking for the confidence interval 'ci', the default is
+##   erfc(1/sqrt(2)) for a one standard deviation confidence interval.
+##
+## Confidence intervals for linear system are given by:
+##    x' p +/- sqrt( Finv(1-a,1,df) var(x' p) )
+## where for confidence intervals,
+##    var(x' p) = sigma^2 (x' inv(A'A) x)
+## and for prediction intervals,
+##    var(x' p) = sigma^2 (1 + x' inv(A'A) x)
+##
+## Rather than A'A we have R from the QR decomposition of A, but
+## R'R equals A'A.  Note that R is not upper triangular since we
+## have already multiplied it by the permutation matrix, but it
+## is invertible.  Rather than forming the product R'R which is
+## ill-conditioned, we can rewrite x' inv(A'A) x as the equivalent
+##    x' inv(R) inv(R') x = t t', for t = x' inv(R)
+## Since x is a vector, t t' is the inner product sumsq(t).
+## Note that LAPACK allows us to do this simultaneously for many
+## different x using sqrt(sumsq(X/R,2)), with each x on a different row.
+##
+## Note: sqrt(F(1-a;1,df)) = T(1-a/2;df)
+##
+## For non-linear systems, use x = dy/dp and ignore the y output.
+function [y,dy] = confidence(A,p,S,alpha,typestr)
+  if nargin < 4, alpha = []; end
+  if nargin < 5, typestr = 'ci'; end
+  y = A*p(:);
+  switch typestr, 
+    case 'ci', pred = 0; default_alpha=erfc(1/sqrt(2));
+    case 'pi', pred = 1; default_alpha=0.05;
+    otherwise, error("use 'ci' or 'pi' for interval type");
+  end
+  if isempty(alpha), alpha = default_alpha; end
+  s = tinv(1-alpha/2,S.df)*S.normr/sqrt(S.df);
+  dy = s*sqrt(pred+sumsq(A/S.R,2));
+end