]> Creatis software - CreaPhase.git/blobdiff - octave_packages/tsa-4.2.4/aar.m
Add a useful package (from Source forge) for octave
[CreaPhase.git] / octave_packages / tsa-4.2.4 / aar.m
diff --git a/octave_packages/tsa-4.2.4/aar.m b/octave_packages/tsa-4.2.4/aar.m
new file mode 100644 (file)
index 0000000..8f5d2a2
--- /dev/null
@@ -0,0 +1,292 @@
+function [a,e,REV,TOC,CPUTIME,ESU] = aar(y, Mode, arg3, arg4, arg5, arg6, arg7, arg8, arg9); 
+% Calculates adaptive autoregressive (AAR) and adaptive autoregressive moving average estimates (AARMA)
+% of real-valued data series using Kalman filter algorithm.
+% [a,e,REV] = aar(y, mode, MOP, UC, a0, A, W, V); 
+%
+% The AAR process is described as following  
+%       y(k) - a(k,1)*y(t-1) -...- a(k,p)*y(t-p) = e(k);
+% The AARMA process is described as following  
+%       y(k) - a(k,1)*y(t-1) -...- a(k,p)*y(t-p) = e(k) + b(k,1)*e(t-1) + ... + b(k,q)*e(t-q);
+%
+% Input:
+%       y       Signal (AR-Process)
+%       Mode    is a two-element vector [aMode, vMode], 
+%               aMode determines 1 (out of 12) methods for updating the co-variance matrix (see also [1])
+%               vMode determines 1 (out of 7) methods for estimating the innovation variance (see also [1])
+%               aMode=1, vmode=2 is the RLS algorithm as used in [2]
+%               aMode=-1, LMS algorithm (signal normalized)
+%               aMode=-2, LMS algorithm with adaptive normalization  
+%                                     
+%       MOP     model order, default [10,0] 
+%               MOP=[p]         AAR(p) model. p AR parameters
+%               MOP=[p,q]       AARMA(p,q) model, p AR parameters and q MA coefficients
+%       UC      Update Coefficient, default 0
+%       a0      Initial AAR parameters [a(0,1), a(0,2), ..., a(0,p),b(0,1),b(0,2), ..., b(0,q)]
+%                (row vector with p+q elements, default zeros(1,p) )
+%       A       Initial Covariance matrix (positive definite pxp-matrix, default eye(p))
+%      W       system noise (required for aMode==0)
+%      V       observation noise (required for vMode==0)
+%      
+% Output:
+%       a       AAR(MA) estimates [a(k,1), a(k,2), ..., a(k,p),b(k,1),b(k,2), ..., b(k,q]
+%       e       error process (Adaptively filtered process)
+%       REV     relative error variance MSE/MSY
+%
+%
+% Hint:
+% The mean square (prediction) error of different variants is useful for determining the free parameters (Mode, MOP, UC) 
+%
+% REFERENCE(S): 
+% [1] A. Schloegl (2000), The electroencephalogram and the adaptive autoregressive model: theory and applications. 
+%     ISBN 3-8265-7640-3 Shaker Verlag, Aachen, Germany. 
+%
+% More references can be found at 
+%     http://www.dpmi.tu-graz.ac.at/~schloegl/publications/
+
+%
+%      $Id: aar.m 8383 2011-07-16 20:06:59Z schloegl $
+%       Copyright (C) 1998-2003 by Alois Schloegl <a.schloegl@ieee.org>
+%
+%    This program is free software: you can redistribute it and/or modify
+%    it under the terms of the GNU General Public License as published by
+%    the Free Software Foundation, either version 3 of the License, or
+%    (at your option) any later version.
+%
+%    This program is distributed in the hope that it will be useful,
+%    but WITHOUT ANY WARRANTY; without even the implied warranty of
+%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+%    GNU General Public License for more details.
+%
+%    You should have received a copy of the GNU General Public License
+%    along with this program.  If not, see <http://www.gnu.org/licenses/>.
+
+
+[nc,nr]=size(y);
+%if nc<nr y=y'; end; tmp=nr;nc=nr; nr=tmp;end;
+
+if nargin<2 Mode=0; end;
+% check Mode (argument2)
+if prod(size(Mode))==2
+        aMode=Mode(1);
+        vMode=Mode(2);
+end;
+if any(aMode==(0:14)) && any(vMode==(0:7)), 
+        fprintf(1,['a' int2str(aMode) 'e' int2str(vMode) ' ']);
+else
+        fprintf(2,'Error AAR.M: invalid Mode argument\n');
+        return;
+end;
+
+% check model order (argument3)
+if nargin<3 MOP=[10,0]; else MOP= arg3; end;
+if length(MOP)==0 p=10; q=0; MOP=p;
+elseif length(MOP)==1 p=MOP(1); q=0; MOP=p;
+elseif length(MOP)>=2 p=MOP(1); q=MOP(2); MOP=p+q;
+end;
+
+if nargin<4 UC=0; else UC= arg4; end;
+
+a0=zeros(1,MOP); 
+A0=eye(MOP);
+if nargin>4, 
+       if all(size(arg5)==([1,1]*(MOP+1)));    % extended covariance matrix of AAR parameters 
+               a0 = arg5(1,2:size(arg5,2));
+               A0 = arg5(2:size(arg5,1),2:size(arg5,2)) - a0'*a0;
+       else
+               a0 = arg5;  
+               if nargin>5 
+                       A0 = arg6;  
+               end;
+       end;
+end;
+
+if nargin<7, W  = []; else W  = arg7; end;
+        
+if all(size(W)==MOP), 
+        if aMode ~= 0, 
+                fprintf(1,'aMode should be 0, because W is given.\n');
+        end;
+elseif isempty(W),
+        if aMode == 0, 
+                fprintf(1,'aMode must be non-zero, because W is not given.\n');
+        end;
+elseif any(size(W)~=MOP), 
+        fprintf(1,'size of W does not fit. It must be %i x %i.\n',MOP,MOP);
+        return;
+end;
+
+if nargin<8, V0 = []; else V0 = arg8; end;
+if all(size(V0)==nr), 
+        if vMode ~= 0, 
+                fprintf(1,'vMode should be 0, because V is given.\n');
+        end;
+elseif isempty(V0),
+        if aMode == 0, 
+                fprintf(1,'vMode must be non-zero, because V is not given.\n');
+        end;
+else 
+        fprintf(1,'size of V does not fit. It must be 1x1.\n');
+        return;
+end;
+
+% if nargin<7 TH=3; else TH = arg7;  end;
+%       TH=TH*var(y);
+%       TH=TH*mean(detrend(y,0).^2);
+MSY=mean(detrend(y,0).^2);
+
+e=zeros(nc,1);
+Q=zeros(nc,1);
+V=zeros(nc,1);
+T=zeros(nc,1);
+%DET=zeros(nc,1);
+SPUR=zeros(nc,1);
+ESU=zeros(nc,1);
+a=a0(ones(nc,1),:);
+%a=zeros(nc,MOP);
+%b=zeros(nc,q);
+
+mu=1-UC; % Patomaeki 1995
+lambda=(1-UC); % Schloegl 1996
+arc=poly((1-UC*2)*[1;1]);b0=sum(arc); % Whale forgettting factor for Mode=258,(Bianci et al. 1997)
+
+dW=UC/MOP*eye(MOP);                % Schloegl
+
+
+%------------------------------------------------
+%       First Iteration
+%------------------------------------------------
+Y=zeros(MOP,1);
+C=zeros(MOP);
+%X=zeros(q,1);
+at=a0;
+A=A0;
+E=y(1);
+e(1)=E;
+if ~isempty(V0)
+        V(1) = V0;
+else
+        V(1) = (1-UC) + UC*E*E;
+end;
+ESU(1) = 1; %Y'*A*Y;
+
+A1=zeros(MOP);A2=A1;
+tic;CPUTIME=cputime;
+%------------------------------------------------
+%       Update Equations
+%------------------------------------------------
+T0=2;
+
+for t=T0:nc,
+        
+        %Y=[y(t-1); Y(1:p-1); E ; Y(p+1:MOP-1)]
+        
+        if t<=p Y(1:t-1)=y(t-1:-1:1);           % Autoregressive 
+        else    Y(1:p)=y(t-1:-1:t-p); 
+        end;
+        
+        if t<=q Y(p+(1:t-1))=e(t-1:-1:1);       % Moving Average
+        else    Y(p+1:MOP)=e(t-1:-1:t-q); 
+        end;
+        
+        % Prediction Error 
+        E = y(t) - a(t-1,:)*Y;
+        e(t) = E;
+        E2=E*E;
+        
+        AY=A*Y; 
+        esu=Y'*AY;
+        ESU(t)=esu;
+        
+        if isnan(E),
+                a(t,:)=a(t-1,:);
+        else
+                V(t) = V(t-1)*(1-UC)+UC*E2;        
+                if aMode == -1, % LMS 
+                        %       V(t) = V(t-1)*(1-UC)+UC*E2;        
+                        a(t,:)=a(t-1,:) + (UC/MSY)*E*Y';
+                elseif aMode == -2, % LMS with adaptive estimation of the variance 
+                        a(t,:)=a(t-1,:) + UC/V(t)*E*Y';
+                        
+                else    % Kalman filtering (including RLS) 
+                        if vMode==0,            %eMode==4
+                                Q(t) = (esu + V0);      
+                        elseif vMode==1,            %eMode==4
+                                Q(t) = (esu + V(t));      
+                        elseif vMode==2,        %eMode==2
+                                Q(t) = (esu + 1);          
+                        elseif vMode==3,        %eMode==3
+                                Q(t) = (esu + lambda);     
+                        elseif vMode==4,        %eMode==1
+                                Q(t) = (esu + V(t-1));           
+                        elseif vMode==5,        %eMode==6
+                                if E2>esu 
+                                        V(t)=(1-UC)*V(t-1)+UC*(E2-esu);
+                                else 
+                                        V(t)=V(t-1);
+                                end;
+                                Q(t) = (esu + V(t));           
+                        elseif vMode==6,        %eMode==7
+                                if E2>esu 
+                                        V(t)=(1-UC)*V(t-1)+UC*(E2-esu);
+                                else 
+                                        V(t)=V(t-1);
+                                end;
+                                Q(t) = (esu + V(t-1));           
+                        elseif vMode==7,        %eMode==8
+                                Q(t) = esu;
+                        end;
+                        
+                        k = AY / Q(t);          % Kalman Gain
+                        a(t,:) = a(t-1,:) + k'*E;
+                        
+                        if aMode==0,                    %AMode=0
+                                A = A - k*AY' + W;                   % Schloegl et al. 2003
+                        elseif aMode==1,                    %AMode=1
+                                A = (1+UC)*(A - k*AY');                   % Schloegl et al. 1997
+                        elseif aMode==2,                %AMode=11
+                                A = A - k*AY';
+                                A = A + sum(diag(A))*dW;
+                        elseif aMode==3,                %AMode=5
+                                A = A - k*AY' + sum(diag(A))*dW;
+                        elseif aMode==4,                %AMode=6
+                                A = A - k*AY' + UC*eye(MOP);               % Schloegl 1998
+                        elseif aMode==5,                %AMode=2
+                                A = A - k*AY' + UC*UC*eye(MOP);
+                        elseif aMode==6,                %AMode=2
+                                T(t)=(1-UC)*T(t-1)+UC*(E2-Q(t))/(Y'*Y);  
+                                A=A*V(t-1)/Q(t);  
+                                if T(t)>0 A=A+T(t)*eye(MOP); end;          
+                        elseif aMode==7,                %AMode=6
+                                T(t)=(1-UC)*T(t-1)+UC*(E2-Q(t))/(Y'*Y);      
+                                A=A*V(t)/Q(t);  
+                                if T(t)>0 A=A+T(t)*eye(MOP); end;          
+                        elseif aMode==8,                %AMode=5
+                                Q_wo = (Y'*C*Y + V(t-1));                
+                                C=A-k*AY';
+                                T(t)=(1-UC)*T(t-1)+UC*(E2-Q_wo)/(Y'*Y);      
+                                if T(t)>0 A=C+T(t)*eye(MOP); else A=C; end;          
+                        elseif aMode==9,                %AMode=3
+                                A = A - (1+UC)*k*AY';
+                                A = A + sum(diag(A))*dW;
+                        elseif aMode==10,               %AMode=7
+                                A = A - (1+UC)*k*AY' + sum(diag(A))*dW;
+                        elseif aMode==11,               %AMode=8
+                                
+                                A = A - (1+UC)*k*AY' + UC*eye(MOP);        % Schloegl 1998
+                        elseif aMode==12,               %AMode=4
+                                A = A - (1+UC)*k*AY' + UC*UC*eye(MOP);
+                        elseif aMode==13
+                                A = A - k*AY' + UC*diag(diag(A));
+                        elseif aMode==14
+                                A = A - k*AY' + (UC*UC)*diag(diag(A));
+                        end;
+                end;
+        end;
+end;
+
+%a=a(end,:);
+TOC = toc;
+CPUTIME = cputime - CPUTIME;
+%REV = (e'*e)/(y'*y);
+
+REV = mean(e.*e)./mean(y.*y);