X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?p=CreaPhase.git;a=blobdiff_plain;f=octave_packages%2Fm%2Fgeneral%2Fcurl.m;fp=octave_packages%2Fm%2Fgeneral%2Fcurl.m;h=00659745dc5ec6f7f049e0a5d538339f04c78ae3;hp=0000000000000000000000000000000000000000;hb=1c0469ada9531828709108a4882a751d2816994a;hpb=63de9f36673d49121015e3695f2c336ea92bc278 diff --git a/octave_packages/m/general/curl.m b/octave_packages/m/general/curl.m new file mode 100644 index 0000000..0065974 --- /dev/null +++ b/octave_packages/m/general/curl.m @@ -0,0 +1,142 @@ +## Copyright (C) 2009-2012 Kai Habel +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 3 of the License, or (at +## your option) any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, see +## . + +## -*- texinfo -*- +## @deftypefn {Function File} {[@var{cx}, @var{cy}, @var{cz}, @var{v}] =} curl (@var{x}, @var{y}, @var{z}, @var{fx}, @var{fy}, @var{fz}) +## @deftypefnx {Function File} {[@var{cz}, @var{v}] =} curl (@var{x}, @var{y}, @var{fx}, @var{fy}) +## @deftypefnx {Function File} {[@dots{}] =} curl (@var{fx}, @var{fy}, @var{fz}) +## @deftypefnx {Function File} {[@dots{}] =} curl (@var{fx}, @var{fy}) +## @deftypefnx {Function File} {@var{v} =} curl (@dots{}) +## Calculate curl of vector field given by the arrays @var{fx}, @var{fy}, and +## @var{fz} or @var{fx}, @var{fy} respectively. +## @tex +## $$ curl F(x,y,z) = \left( {\partial{d} \over \partial{y}} F_z - {\partial{d} \over \partial{z}} F_y, {\partial{d} \over \partial{z}} F_x - {\partial{d} \over \partial{x}} F_z, {\partial{d} \over \partial{x}} F_y - {\partial{d} \over \partial{y}} F_x \right)$$ +## @end tex +## @ifnottex +## +## @example +## @group +## / d d d d d d \ +## curl F(x,y,z) = | -- Fz - -- Fy, -- Fx - -- Fz, -- Fy - -- Fx | +## \ dy dz dz dx dx dy / +## @end group +## @end example +## +## @end ifnottex +## The coordinates of the vector field can be given by the arguments @var{x}, +## @var{y}, @var{z} or @var{x}, @var{y} respectively. @var{v} calculates the +## scalar component of the angular velocity vector in direction of the z-axis +## for two-dimensional input. For three-dimensional input the scalar +## rotation is calculated at each grid point in direction of the vector field +## at that point. +## @seealso{divergence, gradient, del2, cross} +## @end deftypefn + +## Author: Kai Habel + +function varargout = curl (varargin) + + fidx = 1; + if (nargin == 2) + sz = size (varargin{fidx}); + dx = (1:sz(2))(:); + dy = (1:sz(1))(:); + elseif (nargin == 3) + sz = size (varargin{fidx}); + dx = (1:sz(2))(:); + dy = (1:sz(1))(:); + dz = (1:sz(3))(:); + elseif (nargin == 4) + fidx = 3; + dx = varargin{1}(1,:); + dy = varargin{2}(:,1); + elseif (nargin == 6) + fidx = 4; + dx = varargin{1}(1,:,1)(:); + dy = varargin{2}(:,1,1)(:); + dz = varargin{3}(1,1,:)(:); + else + print_usage(); + endif + + if ((nargin == 4) || (nargin == 2)) + if (!size_equal (varargin{fidx}, varargin{fidx + 1})) + error ("curl: size of X and Y must match"); + elseif (ndims (varargin{fidx}) != 2) + error ("curl: expected two-dimensional matrices X and Y"); + elseif ((length (dx) != columns (varargin{fidx})) + || (length (dy) != rows (varargin{fidx}))) + error ("curl: size of dx and dy must match the respective dimension of X and Y"); + endif + + dFx_dy = gradient (varargin{fidx}.', dy, dx).'; + dFy_dx = gradient (varargin{fidx + 1}, dx, dy); + rot_z = dFy_dx - dFx_dy; + av = rot_z / 2; + if (nargout == 0 || nargout == 1) + varargout{1} = av; + else + varargout{1} = rot_z; + varargout{2} = av; + endif + + elseif ((nargin == 6) || (nargin == 3)) + if (!size_equal (varargin{fidx}, varargin{fidx + 1}, varargin{fidx + 2})) + error ("curl: size of X, Y, and Z must match"); + elseif (ndims (varargin{fidx}) != 3) + error ("curl: expected two-dimensional matrices X, Y, and Z"); + elseif ((length (dx) != size (varargin{fidx}, 2)) + || (length (dy) != size (varargin{fidx}, 1)) + || (length (dz) != size (varargin{fidx}, 3))) + error ("curl: size of dx, dy, and dz must match the respective dimesion of X, Y, and Z"); + endif + + [~, dFx_dy, dFx_dz] = gradient (varargin{fidx}, dx, dy, dz); + [dFy_dx, ~, dFy_dz] = gradient (varargin{fidx + 1}, dx, dy, dz); + [dFz_dx, dFz_dy] = gradient (varargin{fidx + 2}, dx, dy, dz); + rot_x = dFz_dy - dFy_dz; + rot_y = dFx_dz - dFz_dx; + rot_z = dFy_dx - dFx_dy; + l = sqrt(varargin{fidx}.^2 + varargin{fidx + 1}.^2 + varargin{fidx + 2}.^2); + av = (rot_x .* varargin{fidx} + + rot_y .* varargin{fidx + 1} + + rot_z .* varargin{fidx + 2}) ./ (2 * l); + + if (nargout == 0 || nargout == 1) + varargout{1} = av; + else + varargout{1} = rot_x; + varargout{2} = rot_y; + varargout{3} = rot_z; + varargout{4} = av; + endif + endif + +endfunction + +%!test +%! [X,Y]=meshgrid(-20:20,-22:22); +%! av = curl(2*(X-Y),Y); +%! assert(all(av(:)==1)); +%! [cz,av] = curl(2*(X-Y),Y); +%! assert(all(cz(:)==2)); +%! assert(all(av(:)==1)); +%! [cz,av] = curl(X/2,Y/2,2*(X-Y),Y); +%! assert(all(cz(:)==4)); +%! assert(all(av(:)==2)); +%! assert(size_equal(X,Y,cz,av));