X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?p=CreaPhase.git;a=blobdiff_plain;f=octave_packages%2Fm%2Fgeneral%2Fdel2.m;fp=octave_packages%2Fm%2Fgeneral%2Fdel2.m;h=f3972e28fb4397b38af27acbd778c66456c0305e;hp=0000000000000000000000000000000000000000;hb=1c0469ada9531828709108a4882a751d2816994a;hpb=63de9f36673d49121015e3695f2c336ea92bc278 diff --git a/octave_packages/m/general/del2.m b/octave_packages/m/general/del2.m new file mode 100644 index 0000000..f3972e2 --- /dev/null +++ b/octave_packages/m/general/del2.m @@ -0,0 +1,159 @@ +## Copyright (C) 2000-2012 Kai Habel +## Copyright (C) 2007 David Bateman +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 3 of the License, or (at +## your option) any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, see +## . + +## -*- texinfo -*- +## @deftypefn {Function File} {@var{d} =} del2 (@var{M}) +## @deftypefnx {Function File} {@var{d} =} del2 (@var{M}, @var{h}) +## @deftypefnx {Function File} {@var{d} =} del2 (@var{M}, @var{dx}, @var{dy}, @dots{}) +## +## Calculate the discrete Laplace +## @tex +## operator $( \nabla^2 )$. +## @end tex +## @ifnottex +## operator. +## @end ifnottex +## For a 2-dimensional matrix @var{M} this is defined as +## @tex +## $$d = {1 \over 4} \left( {d^2 \over dx^2} M(x,y) + {d^2 \over dy^2} M(x,y) \right)$$ +## @end tex +## @ifnottex +## +## @example +## @group +## 1 / d^2 d^2 \ +## D = --- * | --- M(x,y) + --- M(x,y) | +## 4 \ dx^2 dy^2 / +## @end group +## @end example +## +## @end ifnottex +## For N-dimensional arrays the sum in parentheses is expanded to include second +## derivatives over the additional higher dimensions. +## +## The spacing between evaluation points may be defined by @var{h}, which is a +## scalar defining the equidistant spacing in all dimensions. Alternatively, +## the spacing in each dimension may be defined separately by @var{dx}, +## @var{dy}, etc. A scalar spacing argument defines equidistant spacing, +## whereas a vector argument can be used to specify variable spacing. The +## length of the spacing vectors must match the respective dimension of +## @var{M}. The default spacing value is 1. +## +## At least 3 data points are needed for each dimension. Boundary points are +## calculated from the linear extrapolation of interior points. +## +## @seealso{gradient, diff} +## @end deftypefn + +## Author: Kai Habel + +function D = del2 (M, varargin) + + if (nargin < 1) + print_usage (); + endif + + nd = ndims (M); + sz = size (M); + dx = cell (1, nd); + if (nargin == 2 || nargin == 1) + if (nargin == 1) + h = 1; + else + h = varargin{1}; + endif + for i = 1 : nd + if (isscalar (h)) + dx{i} = h * ones (sz (i), 1); + else + if (length (h) == sz (i)) + dx{i} = diff (h)(:); + else + error ("del2: dimensionality mismatch in %d-th spacing vector", i); + endif + endif + endfor + elseif (nargin - 1 == nd) + ## Reverse dx{1} and dx{2} as the X-dim is the 2nd dim of the ND array + tmp = varargin{1}; + varargin{1} = varargin{2}; + varargin{2} = tmp; + + for i = 1 : nd + if (isscalar (varargin{i})) + dx{i} = varargin{i} * ones (sz (i), 1); + else + if (length (varargin{i}) == sz (i)) + dx{i} = diff (varargin{i})(:); + else + error ("del2: dimensionality mismatch in %d-th spacing vector", i); + endif + endif + endfor + else + print_usage (); + endif + + idx = cell (1, nd); + for i = 1: nd + idx{i} = ":"; + endfor + + D = zeros (sz); + for i = 1: nd + if (sz(i) >= 3) + DD = zeros (sz); + idx1 = idx2 = idx3 = idx; + + ## interior points + idx1{i} = 1 : sz(i) - 2; + idx2{i} = 2 : sz(i) - 1; + idx3{i} = 3 : sz(i); + szi = sz; + szi (i) = 1; + + h1 = repmat (shiftdim (dx{i}(1 : sz(i) - 2), 1 - i), szi); + h2 = repmat (shiftdim (dx{i}(2 : sz(i) - 1), 1 - i), szi); + DD(idx2{:}) = ((M(idx1{:}) - M(idx2{:})) ./ h1 + ... + (M(idx3{:}) - M(idx2{:})) ./ h2) ./ (h1 + h2); + + ## left and right boundary + if (sz(i) == 3) + DD(idx1{:}) = DD(idx3{:}) = DD(idx2{:}); + else + idx1{i} = 1; + idx2{i} = 2; + idx3{i} = 3; + DD(idx1{:}) = (dx{i}(1) + dx{i}(2)) / dx{i}(2) * DD (idx2{:}) - ... + dx{i}(1) / dx{i}(2) * DD (idx3{:}); + + idx1{i} = sz(i); + idx2{i} = sz(i) - 1; + idx3{i} = sz(i) - 2; + DD(idx1{:}) = (dx{i}(sz(i) - 1) + dx{i}(sz(i) - 2)) / ... + dx{i}(sz(i) - 2) * DD (idx2{:}) - ... + dx{i}(sz(i) - 1) / dx{i}(sz(i) - 2) * DD (idx3{:}); + endif + + D += DD; + endif + endfor + + D = D ./ nd; +endfunction