X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?p=CreaPhase.git;a=blobdiff_plain;f=octave_packages%2Fm%2Fgeneral%2Finterp2.m;fp=octave_packages%2Fm%2Fgeneral%2Finterp2.m;h=d7744827f79369dfc9c7883dd0a61f56f7382707;hp=0000000000000000000000000000000000000000;hb=1c0469ada9531828709108a4882a751d2816994a;hpb=63de9f36673d49121015e3695f2c336ea92bc278 diff --git a/octave_packages/m/general/interp2.m b/octave_packages/m/general/interp2.m new file mode 100644 index 0000000..d774482 --- /dev/null +++ b/octave_packages/m/general/interp2.m @@ -0,0 +1,610 @@ +## Copyright (C) 2000-2012 Kai Habel +## Copyright (C) 2009 Jaroslav Hajek +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 3 of the License, or (at +## your option) any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, see +## . + +## -*- texinfo -*- +## @deftypefn {Function File} {@var{zi} =} interp2 (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi}) +## @deftypefnx {Function File} {@var{zi} =} interp2 (@var{Z}, @var{xi}, @var{yi}) +## @deftypefnx {Function File} {@var{zi} =} interp2 (@var{Z}, @var{n}) +## @deftypefnx {Function File} {@var{zi} =} interp2 (@dots{}, @var{method}) +## @deftypefnx {Function File} {@var{zi} =} interp2 (@dots{}, @var{method}, @var{extrapval}) +## +## Two-dimensional interpolation. @var{x}, @var{y} and @var{z} describe a +## surface function. If @var{x} and @var{y} are vectors their length +## must correspondent to the size of @var{z}. @var{x} and @var{y} must be +## monotonic. If they are matrices they must have the @code{meshgrid} +## format. +## +## @table @code +## @item interp2 (@var{x}, @var{y}, @var{Z}, @var{xi}, @var{yi}, @dots{}) +## Returns a matrix corresponding to the points described by the +## matrices @var{xi}, @var{yi}. +## +## If the last argument is a string, the interpolation method can +## be specified. The method can be 'linear', 'nearest' or 'cubic'. +## If it is omitted 'linear' interpolation is assumed. +## +## @item interp2 (@var{z}, @var{xi}, @var{yi}) +## Assumes @code{@var{x} = 1:rows (@var{z})} and @code{@var{y} = +## 1:columns (@var{z})} +## +## @item interp2 (@var{z}, @var{n}) +## Interleaves the matrix @var{z} n-times. If @var{n} is omitted a value +## of @code{@var{n} = 1} is assumed. +## @end table +## +## The variable @var{method} defines the method to use for the +## interpolation. It can take one of the following values +## +## @table @asis +## @item 'nearest' +## Return the nearest neighbor. +## +## @item 'linear' +## Linear interpolation from nearest neighbors. +## +## @item 'pchip' +## Piecewise cubic Hermite interpolating polynomial. +## +## @item 'cubic' +## Cubic interpolation from four nearest neighbors. +## +## @item 'spline' +## Cubic spline interpolation---smooth first and second derivatives +## throughout the curve. +## @end table +## +## If a scalar value @var{extrapval} is defined as the final value, then +## values outside the mesh as set to this value. Note that in this case +## @var{method} must be defined as well. If @var{extrapval} is not +## defined then NA is assumed. +## +## @seealso{interp1} +## @end deftypefn + +## Author: Kai Habel +## 2005-03-02 Thomas Weber +## * Add test cases +## 2005-03-02 Paul Kienzle +## * Simplify +## 2005-04-23 Dmitri A. Sergatskov +## * Modified demo and test for new gnuplot interface +## 2005-09-07 Hoxide +## * Add bicubic interpolation method +## * Fix the eat line bug when the last element of XI or YI is +## negative or zero. +## 2005-11-26 Pierre Baldensperger +## * Rather big modification (XI,YI no longer need to be +## "meshgridded") to be consistent with the help message +## above and for compatibility. + +function ZI = interp2 (varargin) + Z = X = Y = XI = YI = n = []; + method = "linear"; + extrapval = NA; + + switch (nargin) + case 1 + Z = varargin{1}; + n = 1; + case 2 + if (ischar (varargin{2})) + [Z, method] = deal (varargin{:}); + n = 1; + else + [Z, n] = deal (varargin{:}); + endif + case 3 + if (ischar (varargin{3})) + [Z, n, method] = deal (varargin{:}); + else + [Z, XI, YI] = deal (varargin{:}); + endif + case 4 + if (ischar (varargin{4})) + [Z, XI, YI, method] = deal (varargin{:}); + else + [Z, n, method, extrapval] = deal (varargin{:}); + endif + case 5 + if (ischar (varargin{4})) + [Z, XI, YI, method, extrapval] = deal (varargin{:}); + else + [X, Y, Z, XI, YI] = deal (varargin{:}); + endif + case 6 + [X, Y, Z, XI, YI, method] = deal (varargin{:}); + case 7 + [X, Y, Z, XI, YI, method, extrapval] = deal (varargin{:}); + otherwise + print_usage (); + endswitch + + ## Type checking. + if (!ismatrix (Z)) + error ("interp2: Z must be a matrix"); + endif + if (!isempty (n) && !isscalar (n)) + error ("interp2: N must be a scalar"); + endif + if (!ischar (method)) + error ("interp2: METHOD must be a string"); + endif + if (ischar (extrapval) || strcmp (extrapval, "extrap")) + extrapval = []; + elseif (!isscalar (extrapval)) + error ("interp2: EXTRAPVAL must be a scalar"); + endif + + ## Define X, Y, XI, YI if needed + [zr, zc] = size (Z); + if (isempty (X)) + X = 1:zc; + Y = 1:zr; + endif + if (! isnumeric (X) || ! isnumeric (Y)) + error ("interp2: X, Y must be numeric matrices"); + endif + if (! isempty (n)) + ## Calculate the interleaved input vectors. + p = 2^n; + XI = (p:p*zc)/p; + YI = (p:p*zr)'/p; + endif + if (! isnumeric (XI) || ! isnumeric (YI)) + error ("interp2: XI, YI must be numeric"); + endif + + + if (strcmp (method, "linear") || strcmp (method, "nearest") ... + || strcmp (method, "pchip")) + + ## If X and Y vectors produce a grid from them + if (isvector (X) && isvector (Y)) + X = X(:); Y = Y(:); + elseif (size_equal (X, Y)) + X = X(1,:)'; Y = Y(:,1); + else + error ("interp2: X and Y must be matrices of same size"); + endif + if (columns (Z) != length (X) || rows (Z) != length (Y)) + error ("interp2: X and Y size must match the dimensions of Z"); + endif + + ## If Xi and Yi are vectors of different orientation build a grid + if ((rows (XI) == 1 && columns (YI) == 1) + || (columns (XI) == 1 && rows (YI) == 1)) + [XI, YI] = meshgrid (XI, YI); + elseif (! size_equal (XI, YI)) + error ("interp2: XI and YI must be matrices of equal size"); + endif + + ## if XI, YI are vectors, X and Y should share their orientation. + if (rows (XI) == 1) + if (rows (X) != 1) + X = X.'; + endif + if (rows (Y) != 1) + Y = Y.'; + endif + elseif (columns (XI) == 1) + if (columns (X) != 1) + X = X.'; + endif + if (columns (Y) != 1) + Y = Y.'; + endif + endif + + xidx = lookup (X, XI, "lr"); + yidx = lookup (Y, YI, "lr"); + + if (strcmp (method, "linear")) + ## each quad satisfies the equation z(x,y)=a+b*x+c*y+d*xy + ## + ## a-b + ## | | + ## c-d + a = Z(1:(zr - 1), 1:(zc - 1)); + b = Z(1:(zr - 1), 2:zc) - a; + c = Z(2:zr, 1:(zc - 1)) - a; + d = Z(2:zr, 2:zc) - a - b - c; + + ## scale XI, YI values to a 1-spaced grid + Xsc = (XI - X(xidx)) ./ (diff (X)(xidx)); + Ysc = (YI - Y(yidx)) ./ (diff (Y)(yidx)); + + ## Get 2D index. + idx = sub2ind (size (a), yidx, xidx); + ## We can dispose of the 1D indices at this point to save memory. + clear xidx yidx; + + ## apply plane equation + ZI = a(idx) + b(idx).*Xsc + c(idx).*Ysc + d(idx).*Xsc.*Ysc; + + elseif (strcmp (method, "nearest")) + ii = (XI - X(xidx) >= X(xidx + 1) - XI); + jj = (YI - Y(yidx) >= Y(yidx + 1) - YI); + idx = sub2ind (size (Z), yidx+jj, xidx+ii); + ZI = Z(idx); + + elseif (strcmp (method, "pchip")) + + if (length (X) < 2 || length (Y) < 2) + error ("interp2: pchip2 requires at least 2 points in each dimension"); + endif + + ## first order derivatives + DX = __pchip_deriv__ (X, Z, 2); + DY = __pchip_deriv__ (Y, Z, 1); + ## Compute mixed derivatives row-wise and column-wise, use the average. + DXY = (__pchip_deriv__ (X, DY, 2) + __pchip_deriv__ (Y, DX, 1))/2; + + ## do the bicubic interpolation + hx = diff (X); hx = hx(xidx); + hy = diff (Y); hy = hy(yidx); + + tx = (XI - X(xidx)) ./ hx; + ty = (YI - Y(yidx)) ./ hy; + + ## construct the cubic hermite base functions in x, y + + ## formulas: + ## b{1,1} = ( 2*t.^3 - 3*t.^2 + 1); + ## b{2,1} = h.*( t.^3 - 2*t.^2 + t ); + ## b{1,2} = (-2*t.^3 + 3*t.^2 ); + ## b{2,2} = h.*( t.^3 - t.^2 ); + + ## optimized equivalents of the above: + t1 = tx.^2; + t2 = tx.*t1 - t1; + xb{2,2} = hx.*t2; + t1 = t2 - t1; + xb{2,1} = hx.*(t1 + tx); + t2 += t1; + xb{1,2} = -t2; + xb{1,1} = t2 + 1; + + t1 = ty.^2; + t2 = ty.*t1 - t1; + yb{2,2} = hy.*t2; + t1 = t2 - t1; + yb{2,1} = hy.*(t1 + ty); + t2 += t1; + yb{1,2} = -t2; + yb{1,1} = t2 + 1; + + ZI = zeros (size (XI)); + for i = 1:2 + for j = 1:2 + zidx = sub2ind (size (Z), yidx+(j-1), xidx+(i-1)); + ZI += xb{1,i} .* yb{1,j} .* Z(zidx); + ZI += xb{2,i} .* yb{1,j} .* DX(zidx); + ZI += xb{1,i} .* yb{2,j} .* DY(zidx); + ZI += xb{2,i} .* yb{2,j} .* DXY(zidx); + endfor + endfor + + endif + + if (! isempty (extrapval)) + ## set points outside the table to 'extrapval' + if (X (1) < X (end)) + if (Y (1) < Y (end)) + ZI (XI < X(1,1) | XI > X(end) | YI < Y(1,1) | YI > Y(end)) = ... + extrapval; + else + ZI (XI < X(1) | XI > X(end) | YI < Y(end) | YI > Y(1)) = ... + extrapval; + endif + else + if (Y (1) < Y (end)) + ZI (XI < X(end) | XI > X(1) | YI < Y(1) | YI > Y(end)) = ... + extrapval; + else + ZI (XI < X(1,end) | XI > X(1) | YI < Y(end) | YI > Y(1)) = ... + extrapval; + endif + endif + endif + + else + + ## Check dimensions of X and Y + if (isvector (X) && isvector (Y)) + X = X(:).'; + Y = Y(:); + if (!isequal ([length(Y), length(X)], size(Z))) + error ("interp2: X and Y size must match the dimensions of Z"); + endif + elseif (!size_equal (X, Y)) + error ("interp2: X and Y must be matrices of equal size"); + if (! size_equal (X, Z)) + error ("interp2: X and Y size must match the dimensions of Z"); + endif + endif + + ## Check dimensions of XI and YI + if (isvector (XI) && isvector (YI) && ! size_equal (XI, YI)) + XI = XI(:).'; + YI = YI(:); + [XI, YI] = meshgrid (XI, YI); + elseif (! size_equal (XI, YI)) + error ("interp2: XI and YI must be matrices of equal size"); + endif + + if (strcmp (method, "cubic")) + if (isgriddata (XI) && isgriddata (YI')) + ZI = bicubic (X, Y, Z, XI (1, :), YI (:, 1), extrapval); + elseif (isgriddata (X) && isgriddata (Y')) + ## Allocate output + ZI = zeros (size (X)); + + ## Find inliers + inside = !(XI < X (1) | XI > X (end) | YI < Y (1) | YI > Y (end)); + + ## Scale XI and YI to match indices of Z + XI = (columns (Z) - 1) * (XI - X (1)) / (X (end) - X (1)) + 1; + YI = (rows (Z) - 1) * (YI - Y (1)) / (Y (end) - Y (1)) + 1; + + ## Start the real work + K = floor (XI); + L = floor (YI); + + ## Coefficients + AY1 = bc ((YI - L + 1)); + AX1 = bc ((XI - K + 1)); + AY0 = bc ((YI - L + 0)); + AX0 = bc ((XI - K + 0)); + AY_1 = bc ((YI - L - 1)); + AX_1 = bc ((XI - K - 1)); + AY_2 = bc ((YI - L - 2)); + AX_2 = bc ((XI - K - 2)); + + ## Perform interpolation + sz = size(Z); + ZI = AY_2 .* AX_2 .* Z (sym_sub2ind (sz, L+2, K+2)) ... + + AY_2 .* AX_1 .* Z (sym_sub2ind (sz, L+2, K+1)) ... + + AY_2 .* AX0 .* Z (sym_sub2ind (sz, L+2, K)) ... + + AY_2 .* AX1 .* Z (sym_sub2ind (sz, L+2, K-1)) ... + + AY_1 .* AX_2 .* Z (sym_sub2ind (sz, L+1, K+2)) ... + + AY_1 .* AX_1 .* Z (sym_sub2ind (sz, L+1, K+1)) ... + + AY_1 .* AX0 .* Z (sym_sub2ind (sz, L+1, K)) ... + + AY_1 .* AX1 .* Z (sym_sub2ind (sz, L+1, K-1)) ... + + AY0 .* AX_2 .* Z (sym_sub2ind (sz, L, K+2)) ... + + AY0 .* AX_1 .* Z (sym_sub2ind (sz, L, K+1)) ... + + AY0 .* AX0 .* Z (sym_sub2ind (sz, L, K)) ... + + AY0 .* AX1 .* Z (sym_sub2ind (sz, L, K-1)) ... + + AY1 .* AX_2 .* Z (sym_sub2ind (sz, L-1, K+2)) ... + + AY1 .* AX_1 .* Z (sym_sub2ind (sz, L-1, K+1)) ... + + AY1 .* AX0 .* Z (sym_sub2ind (sz, L-1, K)) ... + + AY1 .* AX1 .* Z (sym_sub2ind (sz, L-1, K-1)); + ZI (!inside) = extrapval; + + else + error ("interp2: input data must have `meshgrid' format"); + endif + + elseif (strcmp (method, "spline")) + if (isgriddata (XI) && isgriddata (YI')) + ZI = __splinen__ ({Y(:,1).', X(1,:)}, Z, {YI(:,1), XI(1,:)}, extrapval, + "spline"); + else + error ("interp2: input data must have `meshgrid' format"); + endif + else + error ("interp2: interpolation METHOD not recognized"); + endif + + endif +endfunction + +function b = isgriddata (X) + d1 = diff (X, 1, 1); + b = all (d1 (:) == 0); +endfunction + +## Compute the bicubic interpolation coefficients +function o = bc(x) + x = abs(x); + o = zeros(size(x)); + idx1 = (x < 1); + idx2 = !idx1 & (x < 2); + o(idx1) = 1 - 2.*x(idx1).^2 + x(idx1).^3; + o(idx2) = 4 - 8.*x(idx2) + 5.*x(idx2).^2 - x(idx2).^3; +endfunction + +## This version of sub2ind behaves as if the data was symmetrically padded +function ind = sym_sub2ind(sz, Y, X) + Y (Y < 1) = 1 - Y (Y < 1); + while (any (Y (:) > 2 * sz (1))) + Y (Y > 2 * sz (1)) = round (Y (Y > 2 * sz (1)) / 2); + endwhile + Y (Y > sz (1)) = 1 + 2 * sz (1) - Y (Y > sz (1)); + X (X < 1) = 1 - X (X < 1); + while (any (X (:) > 2 * sz (2))) + X (X > 2 * sz (2)) = round (X (X > 2 * sz (2)) / 2); + endwhile + X (X > sz (2)) = 1 + 2 * sz (2) - X (X > sz (2)); + ind = sub2ind(sz, Y, X); +endfunction + + +%!demo +%! A=[13,-1,12;5,4,3;1,6,2]; +%! x=[0,1,4]; y=[10,11,12]; +%! xi=linspace(min(x),max(x),17); +%! yi=linspace(min(y),max(y),26)'; +%! mesh(xi,yi,interp2(x,y,A,xi,yi,'linear')); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; + +%!demo +%! [x,y,A] = peaks(10); +%! x = x(1,:)'; y = y(:,1); +%! xi=linspace(min(x),max(x),41); +%! yi=linspace(min(y),max(y),41)'; +%! mesh(xi,yi,interp2(x,y,A,xi,yi,'linear')); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; + +%!demo +%! A=[13,-1,12;5,4,3;1,6,2]; +%! x=[0,1,4]; y=[10,11,12]; +%! xi=linspace(min(x),max(x),17); +%! yi=linspace(min(y),max(y),26)'; +%! mesh(xi,yi,interp2(x,y,A,xi,yi,'nearest')); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; + +%!demo +%! [x,y,A] = peaks(10); +%! x = x(1,:)'; y = y(:,1); +%! xi=linspace(min(x),max(x),41); +%! yi=linspace(min(y),max(y),41)'; +%! mesh(xi,yi,interp2(x,y,A,xi,yi,'nearest')); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; + +%!demo +%! A=[13,-1,12;5,4,3;1,6,2]; +%! x=[0,1,2]; y=[10,11,12]; +%! xi=linspace(min(x),max(x),17); +%! yi=linspace(min(y),max(y),26)'; +%! mesh(xi,yi,interp2(x,y,A,xi,yi,'pchip')); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; + +%!demo +%! [x,y,A] = peaks(10); +%! x = x(1,:)'; y = y(:,1); +%! xi=linspace(min(x),max(x),41); +%! yi=linspace(min(y),max(y),41)'; +%! mesh(xi,yi,interp2(x,y,A,xi,yi,'pchip')); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; + +%!demo +%! A=[13,-1,12;5,4,3;1,6,2]; +%! x=[0,1,2]; y=[10,11,12]; +%! xi=linspace(min(x),max(x),17); +%! yi=linspace(min(y),max(y),26)'; +%! mesh(xi,yi,interp2(x,y,A,xi,yi,'cubic')); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; + +%!demo +%! [x,y,A] = peaks(10); +%! x = x(1,:)'; y = y(:,1); +%! xi=linspace(min(x),max(x),41); +%! yi=linspace(min(y),max(y),41)'; +%! mesh(xi,yi,interp2(x,y,A,xi,yi,'cubic')); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; + +%!demo +%! A=[13,-1,12;5,4,3;1,6,2]; +%! x=[0,1,2]; y=[10,11,12]; +%! xi=linspace(min(x),max(x),17); +%! yi=linspace(min(y),max(y),26)'; +%! mesh(xi,yi,interp2(x,y,A,xi,yi,'spline')); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; + +%!demo +%! [x,y,A] = peaks(10); +%! x = x(1,:)'; y = y(:,1); +%! xi=linspace(min(x),max(x),41); +%! yi=linspace(min(y),max(y),41)'; +%! mesh(xi,yi,interp2(x,y,A,xi,yi,'spline')); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; + +%!test % simple test +%! x = [1,2,3]; +%! y = [4,5,6,7]; +%! [X, Y] = meshgrid(x,y); +%! Orig = X.^2 + Y.^3; +%! xi = [1.2,2, 1.5]; +%! yi = [6.2, 4.0, 5.0]'; +%! +%! Expected = ... +%! [243, 245.4, 243.9; +%! 65.6, 68, 66.5; +%! 126.6, 129, 127.5]; +%! Result = interp2(x,y,Orig, xi, yi); +%! +%! assert(Result, Expected, 1000*eps); + +%!test % 2^n form +%! x = [1,2,3]; +%! y = [4,5,6,7]; +%! [X, Y] = meshgrid(x,y); +%! Orig = X.^2 + Y.^3; +%! xi = [1:0.25:3]; yi = [4:0.25:7]'; +%! Expected = interp2(x,y,Orig, xi, yi); +%! Result = interp2(Orig,2); +%! +%! assert(Result, Expected, 10*eps); + +%!test % matrix slice +%! A = eye(4); +%! assert(interp2(A,[1:4],[1:4]),[1,1,1,1]); + +%!test % non-gridded XI,YI +%! A = eye(4); +%! assert(interp2(A,[1,2;3,4],[1,3;2,4]),[1,0;0,1]); + +%!test % for values outside of boundaries +%! x = [1,2,3]; +%! y = [4,5,6,7]; +%! [X, Y] = meshgrid(x,y); +%! Orig = X.^2 + Y.^3; +%! xi = [0,4]; +%! yi = [3,8]'; +%! assert(interp2(x,y,Orig, xi, yi),[NA,NA;NA,NA]); +%! assert(interp2(x,y,Orig, xi, yi,'linear', 0),[0,0;0,0]); + +%!test % for values at boundaries +%! A=[1,2;3,4]; +%! x=[0,1]; +%! y=[2,3]'; +%! assert(interp2(x,y,A,x,y,'linear'), A); +%! assert(interp2(x,y,A,x,y,'nearest'), A); + +%!test % for Matlab-compatible rounding for 'nearest' +%! X = meshgrid (1:4); +%! assert (interp2 (X, 2.5, 2.5, 'nearest'), 3); + +%!shared z, zout, tol +%! z = [1 3 5; 3 5 7; 5 7 9]; +%! zout = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8; 5 6 7 8 9]; +%! tol = 2 * eps; +%!assert (interp2 (z), zout, tol); +%!assert (interp2 (z, "linear"), zout, tol); +%!assert (interp2 (z, "pchip"), zout, tol); +%!assert (interp2 (z, "cubic"), zout, 10 * tol); +%!assert (interp2 (z, "spline"), zout, tol); +%!assert (interp2 (z, [2 3 1], [2 2 2]', "linear"), repmat ([5, 7, 3], [3, 1]), tol) +%!assert (interp2 (z, [2 3 1], [2 2 2]', "pchip"), repmat ([5, 7, 3], [3, 1]), tol) +%!assert (interp2 (z, [2 3 1], [2 2 2]', "cubic"), repmat ([5, 7, 3], [3, 1]), 10 * tol) +%!assert (interp2 (z, [2 3 1], [2 2 2]', "spline"), repmat ([5, 7, 3], [3, 1]), tol) +%!assert (interp2 (z, [2 3 1], [2 2 2], "linear"), [5 7 3], tol); +%!assert (interp2 (z, [2 3 1], [2 2 2], "pchip"), [5 7 3], tol); +%!assert (interp2 (z, [2 3 1], [2 2 2], "cubic"), [5 7 3], 10 * tol); +%!assert (interp2 (z, [2 3 1], [2 2 2], "spline"), [5 7 3], tol);