X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?p=CreaPhase.git;a=blobdiff_plain;f=octave_packages%2Fm%2Fgeneral%2Frat.m;fp=octave_packages%2Fm%2Fgeneral%2Frat.m;h=6e75c8a06fa2b5caf6863a6e7d366b4a68ee3664;hp=0000000000000000000000000000000000000000;hb=1c0469ada9531828709108a4882a751d2816994a;hpb=63de9f36673d49121015e3695f2c336ea92bc278 diff --git a/octave_packages/m/general/rat.m b/octave_packages/m/general/rat.m new file mode 100644 index 0000000..6e75c8a --- /dev/null +++ b/octave_packages/m/general/rat.m @@ -0,0 +1,160 @@ +## Copyright (C) 2001-2012 Paul Kienzle +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 3 of the License, or (at +## your option) any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, see +## . + +## -*- texinfo -*- +## @deftypefn {Function File} {@var{s} =} rat (@var{x}, @var{tol}) +## @deftypefnx {Function File} {[@var{n}, @var{d}] =} rat (@var{x}, @var{tol}) +## +## Find a rational approximation to @var{x} within the tolerance defined +## by @var{tol} using a continued fraction expansion. For example: +## +## @example +## @group +## rat (pi) = 3 + 1/(7 + 1/16) = 355/113 +## rat (e) = 3 + 1/(-4 + 1/(2 + 1/(5 + 1/(-2 + 1/(-7))))) +## = 1457/536 +## @end group +## @end example +## +## Called with two arguments returns the numerator and denominator separately +## as two matrices. +## @seealso{rats} +## @end deftypefn + +function [n,d] = rat(x,tol) + + if (nargin != [1,2] || nargout > 2) + print_usage (); + endif + + y = x(:); + + ## Replace Inf with 0 while calculating ratios. + y(isinf(y)) = 0; + + ## default norm + if (nargin < 2) + tol = 1e-6 * norm(y,1); + endif + + ## First step in the approximation is the integer portion + + ## First element in the continued fraction. + n = round(y); + d = ones(size(y)); + frac = y-n; + lastn = ones(size(y)); + lastd = zeros(size(y)); + + nd = ndims(y); + nsz = numel (y); + steps = zeros([nsz, 0]); + + ## Grab new factors until all continued fractions converge. + while (1) + ## Determine which fractions have not yet converged. + idx = find(abs (y-n./d) >= tol); + if (isempty(idx)) + if (isempty (steps)) + steps = NaN (nsz, 1); + endif + break; + endif + + ## Grab the next step in the continued fraction. + flip = 1./frac(idx); + ## Next element in the continued fraction. + step = round(flip); + + if (nargout < 2) + tsteps = NaN (nsz, 1); + tsteps (idx) = step; + steps = [steps, tsteps]; + endif + + frac(idx) = flip-step; + + ## Update the numerator/denominator. + nextn = n; + nextd = d; + n(idx) = n(idx).*step + lastn(idx); + d(idx) = d(idx).*step + lastd(idx); + lastn = nextn; + lastd = nextd; + endwhile + + if (nargout == 2) + ## Move the minus sign to the top. + n = n.*sign(d); + d = abs(d); + + ## Return the same shape as you receive. + n = reshape(n, size(x)); + d = reshape(d, size(x)); + + ## Use 1/0 for Inf. + n(isinf(x)) = sign(x(isinf(x))); + d(isinf(x)) = 0; + + ## Reshape the output. + n = reshape (n, size (x)); + d = reshape (d, size (x)); + else + n = ""; + nsteps = size(steps, 2); + for i = 1: nsz + s = [int2str(y(i))," "]; + j = 1; + + while (true) + step = steps(i, j++); + if (isnan (step)) + break; + endif + if (j > nsteps || isnan (steps(i, j))) + if (step < 0) + s = [s(1:end-1), " + 1/(", int2str(step), ")"]; + else + s = [s(1:end-1), " + 1/", int2str(step)]; + endif + break; + else + s = [s(1:end-1), " + 1/(", int2str(step), ")"]; + endif + endwhile + s = [s, repmat(")", 1, j-2)]; + n_nc = columns (n); + s_nc = columns (s); + if (n_nc > s_nc) + s(:,s_nc+1:n_nc) = " "; + elseif (s_nc > n_nc) + n(:,n_nc+1:s_nc) = " "; + endif + n = cat (1, n, s); + endfor + endif + +endfunction + +%!error rat (); +%!error rat (1, 2, 3); + +%!test +%! [n, d] = rat ([0.5, 0.3, 1/3]); +%! assert (n, [1, 3, 1]); +%! assert (d, [2, 10, 3]);