X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?p=CreaPhase.git;a=blobdiff_plain;f=octave_packages%2Fm%2Fgeometry%2Fgriddata.m;fp=octave_packages%2Fm%2Fgeometry%2Fgriddata.m;h=9d55f4e851eddaa93193097874c677ba704abc64;hp=0000000000000000000000000000000000000000;hb=1c0469ada9531828709108a4882a751d2816994a;hpb=63de9f36673d49121015e3695f2c336ea92bc278 diff --git a/octave_packages/m/geometry/griddata.m b/octave_packages/m/geometry/griddata.m new file mode 100644 index 0000000..9d55f4e --- /dev/null +++ b/octave_packages/m/geometry/griddata.m @@ -0,0 +1,177 @@ +## Copyright (C) 1999-2012 Kai Habel +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 3 of the License, or (at +## your option) any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, see +## . + +## -*- texinfo -*- +## @deftypefn {Function File} {@var{zi} =} griddata (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi}, @var{method}) +## @deftypefnx {Function File} {[@var{xi}, @var{yi}, @var{zi}] =} griddata (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi}, @var{method}) +## +## Generate a regular mesh from irregular data using interpolation. +## The function is defined by @code{@var{z} = f (@var{x}, @var{y})}. +## Inputs @code{@var{x}, @var{y}, @var{z}} are vectors of the same length +## or @code{@var{x}, @var{y}} are vectors and @code{@var{z}} is matrix. +## +## The interpolation points are all @code{(@var{xi}, @var{yi})}. If +## @var{xi}, @var{yi} are vectors then they are made into a 2-D mesh. +## +## The interpolation method can be @code{"nearest"}, @code{"cubic"} or +## @code{"linear"}. If method is omitted it defaults to @code{"linear"}. +## @seealso{delaunay} +## @end deftypefn + +## Author: Kai Habel +## Adapted-by: Alexander Barth +## xi and yi are not "meshgridded" if both are vectors +## of the same size (for compatibility) + +function [rx, ry, rz] = griddata (x, y, z, xi, yi, method) + + if (nargin == 5) + method = "linear"; + endif + if (nargin < 5 || nargin > 7) + print_usage (); + endif + + if (ischar (method)) + method = tolower (method); + endif + + if (isvector (x) && isvector (y) && all ([numel(y), numel(x)] == size (z))) + [x, y] = meshgrid (x, y); + elseif (! all (size (x) == size (y) & size (x) == size (z))) + if (isvector (z)) + error ("griddata: X, Y, and Z, be vectors of same length"); + else + error ("griddata: lengths of X, Y must match the columns and rows of Z"); + endif + endif + + ## Meshgrid xi and yi if they are a row and column vector. + if (rows (xi) == 1 && columns (yi) == 1) + [xi, yi] = meshgrid (xi, yi); + endif + + if (! size_equal (xi, yi)) + error ("griddata: XI and YI must be vectors or matrices of same size"); + endif + + [nr, nc] = size (xi); + + x = x(:); + y = y(:); + z = z(:); + + ## Triangulate data. + tri = delaunay (x, y); + zi = NaN (size (xi)); + + if (strcmp (method, "cubic")) + error ("griddata: cubic interpolation not yet implemented"); + + elseif (strcmp (method, "nearest")) + ## Search index of nearest point. + idx = dsearch (x, y, tri, xi, yi); + valid = !isnan (idx); + zi(valid) = z(idx(valid)); + + elseif (strcmp (method, "linear")) + ## Search for every point the enclosing triangle. + tri_list = tsearch (x, y, tri, xi(:), yi(:)); + + ## Only keep the points within triangles. + valid = !isnan (tri_list); + tri_list = tri_list(valid); + nr_t = rows (tri_list); + + tri = tri(tri_list,:); + + ## Assign x,y,z for each point of triangle. + x1 = x(tri(:,1)); + x2 = x(tri(:,2)); + x3 = x(tri(:,3)); + + y1 = y(tri(:,1)); + y2 = y(tri(:,2)); + y3 = y(tri(:,3)); + + z1 = z(tri(:,1)); + z2 = z(tri(:,2)); + z3 = z(tri(:,3)); + + ## Calculate norm vector. + N = cross ([x2-x1, y2-y1, z2-z1], [x3-x1, y3-y1, z3-z1]); + ## Normalize. + N = diag (norm (N, "rows")) \ N; + + ## Calculate D of plane equation + ## Ax+By+Cz+D = 0; + D = -(N(:,1) .* x1 + N(:,2) .* y1 + N(:,3) .* z1); + + ## Calculate zi by solving plane equation for xi, yi. + zi(valid) = -(N(:,1).*xi(:)(valid) + N(:,2).*yi(:)(valid) + D) ./ N(:,3); + + else + error ("griddata: unknown interpolation METHOD"); + endif + + if (nargout == 3) + rx = xi; + ry = yi; + rz = zi; + elseif (nargout == 1) + rx = zi; + elseif (nargout == 0) + mesh (xi, yi, zi); + endif +endfunction + +%!testif HAVE_QHULL +%! [xx,yy]=meshgrid(linspace(-1,1,32)); +%! x = xx(:); +%! x = x + 10 * (2 * round(rand(size(x))) - 1) * eps; +%! y = yy(:); +%! y = y + 10 * (2 * round(rand(size(y))) - 1) * eps; +%! z = sin(2*(x.^2+y.^2)); +%! zz = griddata(x,y,z,xx,yy,'linear'); +%! zz2 = sin(2*(xx.^2+yy.^2)); +%! zz2(isnan(zz)) = NaN; +%! assert (zz, zz2, 100 * eps) + +%!demo +%! x=2*rand(100,1)-1; +%! y=2*rand(size(x))-1; +%! z=sin(2*(x.^2+y.^2)); +%! [xx,yy]=meshgrid(linspace(-1,1,32)); +%! griddata(x,y,z,xx,yy); +%! title('nonuniform grid sampled at 100 points'); + +%!demo +%! x=2*rand(1000,1)-1; +%! y=2*rand(size(x))-1; +%! z=sin(2*(x.^2+y.^2)); +%! [xx,yy]=meshgrid(linspace(-1,1,32)); +%! griddata(x,y,z,xx,yy); +%! title('nonuniform grid sampled at 1000 points'); + +%!demo +%! x=2*rand(1000,1)-1; +%! y=2*rand(size(x))-1; +%! z=sin(2*(x.^2+y.^2)); +%! [xx,yy]=meshgrid(linspace(-1,1,32)); +%! griddata(x,y,z,xx,yy,'nearest'); +%! title('nonuniform grid sampled at 1000 points with nearest neighbor');