X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?p=CreaPhase.git;a=blobdiff_plain;f=octave_packages%2Fm%2Flinear-algebra%2Fexpm.m;fp=octave_packages%2Fm%2Flinear-algebra%2Fexpm.m;h=eb5454f6fa69a020f5b84ef6473a4bef3d2b7611;hp=0000000000000000000000000000000000000000;hb=1c0469ada9531828709108a4882a751d2816994a;hpb=63de9f36673d49121015e3695f2c336ea92bc278 diff --git a/octave_packages/m/linear-algebra/expm.m b/octave_packages/m/linear-algebra/expm.m new file mode 100644 index 0000000..eb5454f --- /dev/null +++ b/octave_packages/m/linear-algebra/expm.m @@ -0,0 +1,154 @@ +## Copyright (C) 2008-2012 Jaroslav Hajek, Marco Caliari +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 3 of the License, or (at +## your option) any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, see +## . + +## -*- texinfo -*- +## @deftypefn {Function File} {} expm (@var{A}) +## Return the exponential of a matrix, defined as the infinite Taylor +## series +## @tex +## $$ +## \exp (A) = I + A + {A^2 \over 2!} + {A^3 \over 3!} + \cdots +## $$ +## @end tex +## @ifnottex +## +## @example +## expm (A) = I + A + A^2/2! + A^3/3! + @dots{} +## @end example +## +## @end ifnottex +## The Taylor series is @emph{not} the way to compute the matrix +## exponential; see Moler and Van Loan, @cite{Nineteen Dubious Ways to +## Compute the Exponential of a Matrix}, SIAM Review, 1978. This routine +## uses Ward's diagonal Pad@'e approximation method with three step +## preconditioning (SIAM Journal on Numerical Analysis, 1977). Diagonal +## Pad@'e approximations are rational polynomials of matrices +## @tex +## $D_q(A)^{-1}N_q(A)$ +## @end tex +## @ifnottex +## +## @example +## @group +## -1 +## D (A) N (A) +## @end group +## @end example +## +## @end ifnottex +## whose Taylor series matches the first +## @tex +## $2 q + 1 $ +## @end tex +## @ifnottex +## @code{2q+1} +## @end ifnottex +## terms of the Taylor series above; direct evaluation of the Taylor series +## (with the same preconditioning steps) may be desirable in lieu of the +## Pad@'e approximation when +## @tex +## $D_q(A)$ +## @end tex +## @ifnottex +## @code{Dq(A)} +## @end ifnottex +## is ill-conditioned. +## @seealso{logm, sqrtm} +## @end deftypefn + +function r = expm (A) + + if (nargin != 1) + print_usage (); + endif + + if (! ismatrix (A) || ! issquare (A)) + error ("expm: A must be a square matrix"); + endif + + if (isscalar (A)) + r = exp (A); + return + elseif (strfind (typeinfo (A), "diagonal matrix")) + r = diag (exp (diag (A))); + return + endif + + n = rows (A); + ## Trace reduction. + A(A == -Inf) = -realmax; + trshift = trace (A) / length (A); + if (trshift > 0) + A -= trshift*eye (n); + endif + ## Balancing. + [d, p, aa] = balance (A); + ## FIXME: can we both permute and scale at once? Or should we rather do + ## this: + ## + ## [d, xx, aa] = balance (A, "noperm"); + ## [xx, p, aa] = balance (aa, "noscal"); + [f, e] = log2 (norm (aa, "inf")); + s = max (0, e); + s = min (s, 1023); + aa *= 2^(-s); + + ## Pade approximation for exp(A). + c = [5.0000000000000000e-1,... + 1.1666666666666667e-1,... + 1.6666666666666667e-2,... + 1.6025641025641026e-3,... + 1.0683760683760684e-4,... + 4.8562548562548563e-6,... + 1.3875013875013875e-7,... + 1.9270852604185938e-9]; + + a2 = aa^2; + id = eye (n); + x = (((c(8) * a2 + c(6) * id) * a2 + c(4) * id) * a2 + c(2) * id) * a2 + id; + y = (((c(7) * a2 + c(5) * id) * a2 + c(3) * id) * a2 + c(1) * id) * aa; + + r = (x - y) \ (x + y); + + ## Undo scaling by repeated squaring. + for k = 1:s + r ^= 2; + endfor + + ## inverse balancing. + d = diag (d); + r = d * r / d; + r(p, p) = r; + ## Inverse trace reduction. + if (trshift >0) + r *= exp (trshift); + endif + +endfunction + +%!assert(norm(expm([1 -1;0 1]) - [e -e; 0 e]) < 1e-5); +%!assert(expm([1 -1 -1;0 1 -1; 0 0 1]), [e -e -e/2; 0 e -e; 0 0 e], 1e-5); + +%% Test input validation +%!error expm (); +%!error expm (1, 2); +%!error expm([1 0;0 1; 2 2]); + +%!assert (expm (10), expm (10)) +%!assert (full (expm (eye (3))), expm (full (eye (3)))) +%!assert (full (expm (10*eye (3))), expm (full (10*eye (3))), 8*eps)