X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?p=CreaPhase.git;a=blobdiff_plain;f=octave_packages%2Fm%2Fplot%2Fslice.m;fp=octave_packages%2Fm%2Fplot%2Fslice.m;h=e1301941300c0c8357821f32b04e40ffd15b6e2c;hp=0000000000000000000000000000000000000000;hb=1c0469ada9531828709108a4882a751d2816994a;hpb=63de9f36673d49121015e3695f2c336ea92bc278 diff --git a/octave_packages/m/plot/slice.m b/octave_packages/m/plot/slice.m new file mode 100644 index 0000000..e130194 --- /dev/null +++ b/octave_packages/m/plot/slice.m @@ -0,0 +1,197 @@ +## Copyright (C) 2007-2012 Kai Habel, David Bateman +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 3 of the License, or (at +## your option) any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, see +## . + +## -*- texinfo -*- +## @deftypefn {Function File} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{sx}, @var{sy}, @var{sz}) +## @deftypefnx {Function File} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi}) +## @deftypefnx {Function File} {} slice (@var{v}, @var{sx}, @var{sy}, @var{sz}) +## @deftypefnx {Function File} {} slice (@var{v}, @var{xi}, @var{yi}, @var{zi}) +## @deftypefnx {Function File} {@var{h} =} slice (@dots{}) +## @deftypefnx {Function File} {@var{h} =} slice (@dots{}, @var{method}) +## Plot slices of 3-D data/scalar fields. Each element of the 3-dimensional +## array @var{v} represents a scalar value at a location given by the +## parameters @var{x}, @var{y}, and @var{z}. The parameters @var{x}, +## @var{x}, and @var{z} are either 3-dimensional arrays of the same size +## as the array @var{v} in the "meshgrid" format or vectors. The +## parameters @var{xi}, etc. respect a similar format to @var{x}, etc., +## and they represent the points at which the array @var{vi} is +## interpolated using interp3. The vectors @var{sx}, @var{sy}, and +## @var{sz} contain points of orthogonal slices of the respective axes. +## +## If @var{x}, @var{y}, @var{z} are omitted, they are assumed to be +## @code{x = 1:size (@var{v}, 2)}, @code{y = 1:size (@var{v}, 1)} and +## @code{z = 1:size (@var{v}, 3)}. +## +## @var{Method} is one of: +## +## @table @asis +## @item "nearest" +## Return the nearest neighbor. +## +## @item "linear" +## Linear interpolation from nearest neighbors. +## +## @item "cubic" +## Cubic interpolation from four nearest neighbors (not implemented yet). +## +## @item "spline" +## Cubic spline interpolation---smooth first and second derivatives +## throughout the curve. +## @end table +## +## The default method is @code{"linear"}. +## +## The optional return value @var{h} is a graphics handle to the created +## surface object. +## +## Examples: +## +## @example +## @group +## [x, y, z] = meshgrid (linspace (-8, 8, 32)); +## v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2)); +## slice (x, y, z, v, [], 0, []); +## [xi, yi] = meshgrid (linspace (-7, 7)); +## zi = xi + yi; +## slice (x, y, z, v, xi, yi, zi); +## @end group +## @end example +## @seealso{interp3, surface, pcolor} +## @end deftypefn + +## Author: Kai Habel + +function h = slice (varargin) + + method = "linear"; + nargs = nargin; + + if (ischar (varargin{end})) + method = varargin{end}; + nargs -= 1; + endif + + if (nargs == 4) + v = varargin{1}; + if (ndims (v) != 3) + error ("slice: expect 3-dimensional array of values"); + endif + [nx, ny, nz] = size (v); + [x, y, z] = meshgrid (1:nx, 1:ny, 1:nz); + sx = varargin{2}; + sy = varargin{3}; + sz = varargin{4}; + elseif (nargs == 7) + v = varargin{4}; + if (ndims (v) != 3) + error ("slice: expect 3-dimensional array of values"); + endif + x = varargin{1}; + y = varargin{2}; + z = varargin{3}; + if (all ([isvector(x), isvector(y), isvector(z)])) + [x, y, z] = meshgrid (x, y, z); + elseif (ndims (x) == 3 && size_equal (x, y, z)) + ## Do nothing. + else + error ("slice: X, Y, Z size mismatch"); + endif + sx = varargin{5}; + sy = varargin{6}; + sz = varargin{7}; + else + print_usage (); + endif + + if (any ([isvector(sx), isvector(sy), isvector(sz)])) + have_sval = true; + elseif (ndims(sx) == 2 && size_equal (sx, sy, sz)) + have_sval = false; + else + error ("slice: dimensional mismatch for (XI, YI, ZI) or (SX, SY, SZ)"); + endif + + newplot (); + ax = gca (); + sidx = 1; + maxv = max (v(:)); + minv = min (v(:)); + set (ax, "clim", [minv, maxv]); + + if (have_sval) + ns = length (sx) + length (sy) + length (sz); + hs = zeros(ns,1); + [ny, nx, nz] = size (v); + if (length(sz) > 0) + for i = 1:length(sz) + [xi, yi, zi] = meshgrid (squeeze (x(1,:,1)), + squeeze (y(:,1,1)), sz(i)); + vz = squeeze (interp3 (x, y, z, v, xi, yi, zi, method)); + tmp(sidx++) = surface (xi, yi, sz(i) * ones (size (yi)), vz); + endfor + endif + + if (length (sy) > 0) + for i = length(sy):-1:1 + [xi, yi, zi] = meshgrid (squeeze (x(1,:,1)), sy(i), squeeze (z(1,1,:))); + vy = squeeze (interp3 (x, y, z, v, xi, yi, zi, method)); + tmp(sidx++) = surface (squeeze (xi), + squeeze (sy(i) * ones (size (zi))), + squeeze (zi), vy); + endfor + endif + + if (length (sx) > 0) + for i = length(sx):-1:1 + [xi, yi, zi] = meshgrid (sx(i), squeeze (y(:,1,1)), squeeze (z(1,1,:))); + vx = squeeze (interp3 (x, y, z, v, xi, yi, zi, method)); + tmp(sidx++) = surface (squeeze (sx(i) * ones (size (zi))), + squeeze (yi), squeeze(zi), vx); + endfor + endif + else + vi = interp3 (x, y, z, v, sx, sy, sz); + tmp = surface (sx, sy, sz, vi); + endif + + if (! ishold ()) + set (ax, "view", [-37.5, 30.0], "box", "off", "xgrid", "on", + "ygrid", "on", "zgrid", "on"); + endif + + if (nargout > 0) + h = tmp; + endif + +endfunction + + +%!demo +%! clf +%! [x, y, z] = meshgrid (linspace (-8, 8, 32)); +%! v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2)); +%! slice (x, y, z, v, [], 0, []); + +%!demo +%! clf +%! [x, y, z] = meshgrid (linspace (-8, 8, 32)); +%! v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2)); +%! [xi, yi] = meshgrid (linspace (-7, 7)); +%! zi = xi + yi; +%! slice (x, y, z, v, xi, yi, zi); +