X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?p=CreaPhase.git;a=blobdiff_plain;f=octave_packages%2Fm%2Fpolynomial%2Fspline.m;fp=octave_packages%2Fm%2Fpolynomial%2Fspline.m;h=ce8341339c74ba1bb3bf21f14578716d05b069d8;hp=0000000000000000000000000000000000000000;hb=1c0469ada9531828709108a4882a751d2816994a;hpb=63de9f36673d49121015e3695f2c336ea92bc278 diff --git a/octave_packages/m/polynomial/spline.m b/octave_packages/m/polynomial/spline.m new file mode 100644 index 0000000..ce83413 --- /dev/null +++ b/octave_packages/m/polynomial/spline.m @@ -0,0 +1,305 @@ +## Copyright (C) 2000-2012 Kai Habel +## Copyright (C) 2006 David Bateman +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 3 of the License, or (at +## your option) any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, see +## . + +## -*- texinfo -*- +## @deftypefn {Function File} {@var{pp} =} spline (@var{x}, @var{y}) +## @deftypefnx {Function File} {@var{yi} =} spline (@var{x}, @var{y}, @var{xi}) +## Return the cubic spline interpolant of points @var{x} and @var{y}. +## +## When called with two arguments, return the piecewise polynomial @var{pp} +## that may be used with @code{ppval} to evaluate the polynomial at specific +## points. When called with a third input argument, @code{spline} evaluates +## the spline at the points @var{xi}. The third calling form @code{spline +## (@var{x}, @var{y}, @var{xi})} is equivalent to @code{ppval (spline +## (@var{x}, @var{y}), @var{xi})}. +## +## The variable @var{x} must be a vector of length @var{n}. @var{y} can be +## either a vector or array. If @var{y} is a vector it must have a length of +## either @var{n} or @code{@var{n} + 2}. If the length of @var{y} is +## @var{n}, then the "not-a-knot" end condition is used. If the length of +## @var{y} is @code{@var{n} + 2}, then the first and last values of the +## vector @var{y} are the values of the first derivative of the cubic spline +## at the endpoints. +## +## If @var{y} is an array, then the size of @var{y} must have the form +## @tex +## $$[s_1, s_2, \cdots, s_k, n]$$ +## @end tex +## @ifnottex +## @code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n}]} +## @end ifnottex +## or +## @tex +## $$[s_1, s_2, \cdots, s_k, n + 2].$$ +## @end tex +## @ifnottex +## @code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n} + 2]}. +## @end ifnottex +## The array is reshaped internally to a matrix where the leading +## dimension is given by +## @tex +## $$s_1 s_2 \cdots s_k$$ +## @end tex +## @ifnottex +## @code{@var{s1} * @var{s2} * @dots{} * @var{sk}} +## @end ifnottex +## and each row of this matrix is then treated separately. Note that this +## is exactly opposite to @code{interp1} but is done for @sc{matlab} +## compatibility. +## +## @seealso{pchip, ppval, mkpp, unmkpp} +## @end deftypefn + +## This code is based on csape.m from octave-forge, but has been +## modified to use the sparse solver code in octave that itself allows +## special casing of tri-diagonal matrices, modified for NDArrays and +## for the treatment of vectors y 2 elements longer than x as complete +## splines. + +function ret = spline (x, y, xi) + + x = x(:); + n = length (x); + if (n < 2) + error ("spline: requires at least 2 points"); + endif + + ## Check the size and shape of y + ndy = ndims (y); + szy = size (y); + if (ndy == 2 && (szy(1) == n || szy(2) == n)) + if (szy(2) == n) + a = y.'; + else + a = y; + szy = fliplr (szy); + endif + else + a = shiftdim (reshape (y, [prod(szy(1:end-1)), szy(end)]), 1); + endif + + for k = (1:columns (a))(any (isnan (a))) + ok = ! isnan (a(:,k)); + a(!ok,k) = spline (x(ok), a(ok,k), x(!ok)); + endfor + + complete = false; + if (size (a, 1) == n + 2) + complete = true; + dfs = a(1,:); + dfe = a(end,:); + a = a(2:end-1,:); + endif + + if (~issorted (x)) + [x, idx] = sort(x); + a = a(idx,:); + endif + + b = c = zeros (size (a)); + h = diff (x); + idx = ones (columns (a), 1); + + if (complete) + + if (n == 2) + d = (dfs + dfe) / (x(2) - x(1)) ^ 2 + ... + 2 * (a(1,:) - a(2,:)) / (x(2) - x(1)) ^ 3; + c = (-2 * dfs - dfe) / (x(2) - x(1)) - ... + 3 * (a(1,:) - a(2,:)) / (x(2) - x(1)) ^ 2; + b = dfs; + a = a(1,:); + + d = d(1:n-1,:); + c = c(1:n-1,:); + b = b(1:n-1,:); + a = a(1:n-1,:); + else + if (n == 3) + dg = 1.5 * h(1) - 0.5 * h(2); + c(2:n-1,:) = 1/dg(1); + else + dg = 2 * (h(1:n-2) .+ h(2:n-1)); + dg(1) = dg(1) - 0.5 * h(1); + dg(n-2) = dg(n-2) - 0.5 * h(n-1); + + e = h(2:n-2); + + g = 3 * diff (a(2:n,:)) ./ h(2:n-1,idx) ... + - 3 * diff (a(1:n-1,:)) ./ h(1:n-2,idx); + g(1,:) = 3 * (a(3,:) - a(2,:)) / h(2) ... + - 3 / 2 * (3 * (a(2,:) - a(1,:)) / h(1) - dfs); + g(n-2,:) = 3 / 2 * (3 * (a(n,:) - a(n-1,:)) / h(n-1) - dfe) ... + - 3 * (a(n-1,:) - a(n-2,:)) / h(n-2); + + c(2:n-1,:) = spdiags ([[e(:); 0], dg, [0; e(:)]], + [-1, 0, 1], n-2, n-2) \ g; + endif + + c(1,:) = (3 / h(1) * (a(2,:) - a(1,:)) - 3 * dfs + - c(2,:) * h(1)) / (2 * h(1)); + c(n,:) = - (3 / h(n-1) * (a(n,:) - a(n-1,:)) - 3 * dfe + + c(n-1,:) * h(n-1)) / (2 * h(n-1)); + b(1:n-1,:) = diff (a) ./ h(1:n-1, idx) ... + - h(1:n-1,idx) / 3 .* (c(2:n,:) + 2 * c(1:n-1,:)); + d = diff (c) ./ (3 * h(1:n-1, idx)); + + d = d(1:n-1,:); + c = c(1:n-1,:); + b = b(1:n-1,:); + a = a(1:n-1,:); + endif + else + + if (n == 2) + b = (a(2,:) - a(1,:)) / (x(2) - x(1)); + a = a(1,:); + d = []; + c = []; + b = b(1:n-1,:); + a = a(1:n-1,:); + elseif (n == 3) + + n = 2; + c = (a(1,:) - a(3,:)) / ((x(3) - x(1)) * (x(2) - x(3))) ... + + (a(2,:) - a(1,:)) / ((x(2) - x(1)) * (x(2) - x(3))); + b = (a(2,:) - a(1,:)) * (x(3) - x(1)) ... + / ((x(2) - x(1)) * (x(3) - x(2))) ... + + (a(1,:) - a(3,:)) * (x(2) - x(1)) ... + / ((x(3) - x(1)) * (x(3) - x(2))); + a = a(1,:); + d = []; + x = [min(x), max(x)]; + + c = c(1:n-1,:); + b = b(1:n-1,:); + a = a(1:n-1,:); + else + + g = zeros (n-2, columns (a)); + g(1,:) = 3 / (h(1) + h(2)) ... + * (a(3,:) - a(2,:) - h(2) / h(1) * (a(2,:) - a(1,:))); + g(n-2,:) = 3 / (h(n-1) + h(n-2)) ... + * (h(n-2) / h(n-1) * (a(n,:) - a(n-1,:)) - (a(n-1,:) - a(n-2,:))); + + if (n > 4) + + g(2:n - 3,:) = 3 * diff (a(3:n-1,:)) ./ h(3:n-2,idx) ... + - 3 * diff (a(2:n-2,:)) ./ h(2:n - 3,idx); + + dg = 2 * (h(1:n-2) .+ h(2:n-1)); + dg(1) = dg(1) - h(1); + dg(n-2) = dg(n-2) - h(n-1); + + ldg = udg = h(2:n-2); + udg(1) = udg(1) - h(1); + ldg(n - 3) = ldg(n-3) - h(n-1); + c(2:n-1,:) = spdiags ([[ldg(:); 0], dg, [0; udg(:)]], + [-1, 0, 1], n-2, n-2) \ g; + + elseif (n == 4) + + dg = [h(1) + 2 * h(2); 2 * h(2) + h(3)]; + ldg = h(2) - h(3); + udg = h(2) - h(1); + c(2:n-1,:) = spdiags ([[ldg(:);0], dg, [0; udg(:)]], + [-1, 0, 1], n-2, n-2) \ g; + + endif + + c(1,:) = c(2,:) + h(1) / h(2) * (c(2,:) - c(3,:)); + c(n,:) = c(n-1,:) + h(n-1) / h(n-2) * (c(n-1,:) - c(n-2,:)); + b = diff (a) ./ h(1:n-1, idx) ... + - h(1:n-1, idx) / 3 .* (c(2:n,:) + 2 * c(1:n-1,:)); + d = diff (c) ./ (3 * h(1:n-1, idx)); + + d = d(1:n-1,:);d = d.'(:); + c = c(1:n-1,:);c = c.'(:); + b = b(1:n-1,:);b = b.'(:); + a = a(1:n-1,:);a = a.'(:); + endif + + endif + ret = mkpp (x, cat (2, d, c, b, a), szy(1:end-1)); + + if (nargin == 3) + ret = ppval (ret, xi); + endif + +endfunction + +%!demo +%! x = 0:10; y = sin(x); +%! xspline = 0:0.1:10; yspline = spline(x,y,xspline); +%! title("spline fit to points from sin(x)"); +%! plot(xspline,sin(xspline),"r",xspline,yspline,"g-",x,y,"b+"); +%! legend("original","interpolation","interpolation points"); +%! %-------------------------------------------------------- +%! % confirm that interpolated function matches the original + +%!shared x,y,abserr +%! x = [0:10]; y = sin(x); abserr = 1e-14; +%!assert (spline(x,y,x), y, abserr); +%!assert (spline(x,y,x'), y', abserr); +%!assert (spline(x',y',x'), y', abserr); +%!assert (spline(x',y',x), y, abserr); +%!assert (isempty(spline(x',y',[]))); +%!assert (isempty(spline(x,y,[]))); +%!assert (spline(x,[y;y],x), [spline(x,y,x);spline(x,y,x)],abserr) +%!assert (spline(x,[y;y],x'), [spline(x,y,x);spline(x,y,x)],abserr) +%!assert (spline(x',[y;y],x), [spline(x,y,x);spline(x,y,x)],abserr) +%!assert (spline(x',[y;y],x'), [spline(x,y,x);spline(x,y,x)],abserr) +%! y = cos(x) + i*sin(x); +%!assert (spline(x,y,x), y, abserr) +%!assert (real(spline(x,y,x)), real(y), abserr); +%!assert (real(spline(x,y,x.')), real(y).', abserr); +%!assert (real(spline(x.',y.',x.')), real(y).', abserr); +%!assert (real(spline(x.',y,x)), real(y), abserr); +%!assert (imag(spline(x,y,x)), imag(y), abserr); +%!assert (imag(spline(x,y,x.')), imag(y).', abserr); +%!assert (imag(spline(x.',y.',x.')), imag(y).', abserr); +%!assert (imag(spline(x.',y,x)), imag(y), abserr); +%!test +%! xnan = 5; +%! y(x==xnan) = NaN; +%! ok = ! isnan (y); +%! assert (spline (x, y, x(ok)), y(ok), abserr); +%!test +%! ok = ! isnan (y); +%! assert (! isnan (spline (x, y, x(!ok)))); +%!test +%! x = [1,2]; +%! y = [1,4]; +%! assert (spline (x,y,x), [1,4], abserr); +%!test +%! x = [2,1]; +%! y = [1,4]; +%! assert (spline (x,y,x), [1,4], abserr); +%!test +%! x = [1,2]; +%! y = [1,2,3,4]; +%! pp = spline (x,y); +%! [x,P] = unmkpp (pp); +%! assert (norm (P-[3,-3,1,2]), 0, abserr); +%!test +%! x = [2,1]; +%! y = [1,2,3,4]; +%! pp = spline (x,y); +%! [x,P] = unmkpp (pp); +%! assert (norm (P-[7,-9,1,3]), 0, abserr);