X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?p=CreaPhase.git;a=blobdiff_plain;f=octave_packages%2Fm%2Fsparse%2Fpcg.m;fp=octave_packages%2Fm%2Fsparse%2Fpcg.m;h=da2f49e9da63030a08a154ce21802c222714bf2a;hp=0000000000000000000000000000000000000000;hb=1c0469ada9531828709108a4882a751d2816994a;hpb=63de9f36673d49121015e3695f2c336ea92bc278 diff --git a/octave_packages/m/sparse/pcg.m b/octave_packages/m/sparse/pcg.m new file mode 100644 index 0000000..da2f49e --- /dev/null +++ b/octave_packages/m/sparse/pcg.m @@ -0,0 +1,532 @@ +## Copyright (C) 2004-2012 Piotr Krzyzanowski +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 3 of the License, or (at +## your option) any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, see +## . + +## -*- texinfo -*- +## @deftypefn {Function File} {@var{x} =} pcg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{m1}, @var{m2}, @var{x0}, @dots{}) +## @deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}, @var{eigest}] =} pcg (@dots{}) +## +## Solve the linear system of equations @code{@var{A} * @var{x} = @var{b}} +## by means of the Preconditioned Conjugate Gradient iterative +## method. The input arguments are +## +## @itemize +## @item +## @var{A} can be either a square (preferably sparse) matrix or a +## function handle, inline function or string containing the name +## of a function which computes @code{@var{A} * @var{x}}. In principle +## @var{A} should be symmetric and positive definite; if @code{pcg} +## finds @var{A} to not be positive definite, you will get a warning +## message and the @var{flag} output parameter will be set. +## +## @item +## @var{b} is the right hand side vector. +## +## @item +## @var{tol} is the required relative tolerance for the residual error, +## @code{@var{b} - @var{A} * @var{x}}. The iteration stops if +## @code{norm (@var{b} - @var{A} * @var{x}) <= +## @var{tol} * norm (@var{b} - @var{A} * @var{x0})}. +## If @var{tol} is empty or is omitted, the function sets +## @code{@var{tol} = 1e-6} by default. +## +## @item +## @var{maxit} is the maximum allowable number of iterations; if +## @code{[]} is supplied for @code{maxit}, or @code{pcg} has less +## arguments, a default value equal to 20 is used. +## +## @item +## @var{m} = @var{m1} * @var{m2} is the (left) preconditioning matrix, so that +## the iteration is (theoretically) equivalent to solving by @code{pcg} +## @code{@var{P} * +## @var{x} = @var{m} \ @var{b}}, with @code{@var{P} = @var{m} \ @var{A}}. +## Note that a proper choice of the preconditioner may dramatically +## improve the overall performance of the method. Instead of matrices +## @var{m1} and @var{m2}, the user may pass two functions which return +## the results of applying the inverse of @var{m1} and @var{m2} to +## a vector (usually this is the preferred way of using the preconditioner). +## If @code{[]} is supplied for @var{m1}, or @var{m1} is omitted, no +## preconditioning is applied. If @var{m2} is omitted, @var{m} = @var{m1} +## will be used as preconditioner. +## +## @item +## @var{x0} is the initial guess. If @var{x0} is empty or omitted, the +## function sets @var{x0} to a zero vector by default. +## @end itemize +## +## The arguments which follow @var{x0} are treated as parameters, and +## passed in a proper way to any of the functions (@var{A} or @var{m}) +## which are passed to @code{pcg}. See the examples below for further +## details. The output arguments are +## +## @itemize +## @item +## @var{x} is the computed approximation to the solution of +## @code{@var{A} * @var{x} = @var{b}}. +## +## @item +## @var{flag} reports on the convergence. @code{@var{flag} = 0} means +## the solution converged and the tolerance criterion given by @var{tol} +## is satisfied. @code{@var{flag} = 1} means that the @var{maxit} limit +## for the iteration count was reached. @code{@var{flag} = 3} reports that +## the (preconditioned) matrix was found not positive definite. +## +## @item +## @var{relres} is the ratio of the final residual to its initial value, +## measured in the Euclidean norm. +## +## @item +## @var{iter} is the actual number of iterations performed. +## +## @item +## @var{resvec} describes the convergence history of the method. +## @code{@var{resvec} (i,1)} is the Euclidean norm of the residual, and +## @code{@var{resvec} (i,2)} is the preconditioned residual norm, +## after the (@var{i}-1)-th iteration, @code{@var{i} = +## 1, 2, @dots{}, @var{iter}+1}. The preconditioned residual norm +## is defined as +## @code{norm (@var{r}) ^ 2 = @var{r}' * (@var{m} \ @var{r})} where +## @code{@var{r} = @var{b} - @var{A} * @var{x}}, see also the +## description of @var{m}. If @var{eigest} is not required, only +## @code{@var{resvec} (:,1)} is returned. +## +## @item +## @var{eigest} returns the estimate for the smallest @code{@var{eigest} +## (1)} and largest @code{@var{eigest} (2)} eigenvalues of the +## preconditioned matrix @code{@var{P} = @var{m} \ @var{A}}. In +## particular, if no preconditioning is used, the estimates for the +## extreme eigenvalues of @var{A} are returned. @code{@var{eigest} (1)} +## is an overestimate and @code{@var{eigest} (2)} is an underestimate, +## so that @code{@var{eigest} (2) / @var{eigest} (1)} is a lower bound +## for @code{cond (@var{P}, 2)}, which nevertheless in the limit should +## theoretically be equal to the actual value of the condition number. +## The method which computes @var{eigest} works only for symmetric positive +## definite @var{A} and @var{m}, and the user is responsible for +## verifying this assumption. +## @end itemize +## +## Let us consider a trivial problem with a diagonal matrix (we exploit the +## sparsity of A) +## +## @example +## @group +## n = 10; +## A = diag (sparse (1:n)); +## b = rand (n, 1); +## [l, u, p, q] = luinc (A, 1.e-3); +## @end group +## @end example +## +## @sc{Example 1:} Simplest use of @code{pcg} +## +## @example +## x = pcg (A,b) +## @end example +## +## @sc{Example 2:} @code{pcg} with a function which computes +## @code{@var{A} * @var{x}} +## +## @example +## @group +## function y = apply_a (x) +## y = [1:N]' .* x; +## endfunction +## +## x = pcg ("apply_a", b) +## @end group +## @end example +## +## @sc{Example 3:} @code{pcg} with a preconditioner: @var{l} * @var{u} +## +## @example +## x = pcg (A, b, 1.e-6, 500, l*u) +## @end example +## +## @sc{Example 4:} @code{pcg} with a preconditioner: @var{l} * @var{u}. +## Faster than @sc{Example 3} since lower and upper triangular matrices +## are easier to invert +## +## @example +## x = pcg (A, b, 1.e-6, 500, l, u) +## @end example +## +## @sc{Example 5:} Preconditioned iteration, with full diagnostics. The +## preconditioner (quite strange, because even the original matrix +## @var{A} is trivial) is defined as a function +## +## @example +## @group +## function y = apply_m (x) +## k = floor (length (x) - 2); +## y = x; +## y(1:k) = x(1:k) ./ [1:k]'; +## endfunction +## +## [x, flag, relres, iter, resvec, eigest] = ... +## pcg (A, b, [], [], "apply_m"); +## semilogy (1:iter+1, resvec); +## @end group +## @end example +## +## @sc{Example 6:} Finally, a preconditioner which depends on a +## parameter @var{k}. +## +## @example +## @group +## function y = apply_M (x, varargin) +## K = varargin@{1@}; +## y = x; +## y(1:K) = x(1:K) ./ [1:K]'; +## endfunction +## +## [x, flag, relres, iter, resvec, eigest] = ... +## pcg (A, b, [], [], "apply_m", [], [], 3) +## @end group +## @end example +## +## References: +## +## @enumerate +## @item +## C.T. Kelley, @cite{Iterative Methods for Linear and Nonlinear Equations}, +## SIAM, 1995. (the base PCG algorithm) +## +## @item +## Y. Saad, @cite{Iterative Methods for Sparse Linear Systems}, PWS 1996. +## (condition number estimate from PCG) Revised version of this book is +## available online at @url{http://www-users.cs.umn.edu/~saad/books.html} +## @end enumerate +## +## @seealso{sparse, pcr} +## @end deftypefn + +## Author: Piotr Krzyzanowski +## Modified by: Vittoria Rezzonico +## - Add the ability to provide the pre-conditioner as two separate matrices + +function [x, flag, relres, iter, resvec, eigest] = pcg (A, b, tol, maxit, m1, m2, x0, varargin) + + ## M = M1*M2 + + if (nargin < 7 || isempty (x0)) + x = zeros (size (b)); + else + x = x0; + endif + + if (nargin < 5 || isempty (m1)) + exist_m1 = 0; + else + exist_m1 = 1; + endif + + if (nargin < 6 || isempty (m2)) + exist_m2 = 0; + else + exist_m2 = 1; + endif + + if (nargin < 4 || isempty (maxit)) + maxit = min (size (b, 1), 20); + endif + + maxit += 2; + + if (nargin < 3 || isempty (tol)) + tol = 1e-6; + endif + + preconditioned_residual_out = false; + if (nargout > 5) + T = zeros (maxit, maxit); + preconditioned_residual_out = true; + endif + + ## Assume A is positive definite. + matrix_positive_definite = true; + + p = zeros (size (b)); + oldtau = 1; + if (isnumeric (A)) + ## A is a matrix. + r = b - A*x; + else + ## A should be a function. + r = b - feval (A, x, varargin{:}); + endif + + resvec(1,1) = norm (r); + alpha = 1; + iter = 2; + + while (resvec (iter-1,1) > tol * resvec (1,1) && iter < maxit) + if (exist_m1) + if(isnumeric (m1)) + y = m1 \ r; + else + y = feval (m1, r, varargin{:}); + endif + else + y = r; + endif + if (exist_m2) + if (isnumeric (m2)) + z = m2 \ y; + else + z = feval (m2, y, varargin{:}); + endif + else + z = y; + endif + tau = z' * r; + resvec (iter-1,2) = sqrt (tau); + beta = tau / oldtau; + oldtau = tau; + p = z + beta * p; + if (isnumeric (A)) + ## A is a matrix. + w = A * p; + else + ## A should be a function. + w = feval (A, p, varargin{:}); + endif + ## Needed only for eigest. + oldalpha = alpha; + alpha = tau / (p'*w); + if (alpha <= 0.0) + ## Negative matrix. + matrix_positive_definite = false; + endif + x += alpha * p; + r -= alpha * w; + if (nargout > 5 && iter > 2) + T(iter-1:iter, iter-1:iter) = T(iter-1:iter, iter-1:iter) + ... + [1 sqrt(beta); sqrt(beta) beta]./oldalpha; + ## EVS = eig(T(2:iter-1,2:iter-1)); + ## fprintf(stderr,"PCG condest: %g (iteration: %d)\n", max(EVS)/min(EVS),iter); + endif + resvec (iter,1) = norm (r); + iter++; + endwhile + + if (nargout > 5) + if (matrix_positive_definite) + if (iter > 3) + T = T(2:iter-2,2:iter-2); + l = eig (T); + eigest = [min(l), max(l)]; + ## fprintf (stderr, "pcg condest: %g\n", eigest(2)/eigest(1)); + else + eigest = [NaN, NaN]; + warning ("pcg: eigenvalue estimate failed: iteration converged too fast"); + endif + else + eigest = [NaN, NaN]; + endif + + ## Apply the preconditioner once more and finish with the precond + ## residual. + if (exist_m1) + if (isnumeric (m1)) + y = m1 \ r; + else + y = feval (m1, r, varargin{:}); + endif + else + y = r; + endif + if (exist_m2) + if (isnumeric (m2)) + z = m2 \ y; + else + z = feval (m2, y, varargin{:}); + endif + else + z = y; + endif + + resvec (iter-1,2) = sqrt (r' * z); + else + resvec = resvec(:,1); + endif + + flag = 0; + relres = resvec (iter-1,1) ./ resvec(1,1); + iter -= 2; + if (iter >= maxit - 2) + flag = 1; + if (nargout < 2) + warning ("pcg: maximum number of iterations (%d) reached\n", iter); + warning ("the initial residual norm was reduced %g times.\n", ... + 1.0 / relres); + endif + elseif (nargout < 2) + fprintf (stderr, "pcg: converged in %d iterations. ", iter); + fprintf (stderr, "the initial residual norm was reduced %g times.\n",... + 1.0/relres); + endif + + if (! matrix_positive_definite) + flag = 3; + if (nargout < 2) + warning ("pcg: matrix not positive definite?\n"); + endif + endif +endfunction + +%!demo +%! +%! # Simplest usage of pcg (see also 'help pcg') +%! +%! N = 10; +%! A = diag ([1:N]); b = rand (N, 1); y = A \ b; #y is the true solution +%! x = pcg (A, b); +%! printf('The solution relative error is %g\n', norm (x - y) / norm (y)); +%! +%! # You shouldn't be afraid if pcg issues some warning messages in this +%! # example: watch out in the second example, why it takes N iterations +%! # of pcg to converge to (a very accurate, by the way) solution +%!demo +%! +%! # Full output from pcg, except for the eigenvalue estimates +%! # We use this output to plot the convergence history +%! +%! N = 10; +%! A = diag ([1:N]); b = rand (N, 1); X = A \ b; #X is the true solution +%! [x, flag, relres, iter, resvec] = pcg (A, b); +%! printf('The solution relative error is %g\n', norm (x - X) / norm (X)); +%! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||/||b||)'); +%! semilogy([0:iter], resvec / resvec(1),'o-g'); +%! legend('relative residual'); +%!demo +%! +%! # Full output from pcg, including the eigenvalue estimates +%! # Hilbert matrix is extremely ill conditioned, so pcg WILL have problems +%! +%! N = 10; +%! A = hilb (N); b = rand (N, 1); X = A \ b; #X is the true solution +%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], 200); +%! printf('The solution relative error is %g\n', norm (x - X) / norm (X)); +%! printf('Condition number estimate is %g\n', eigest(2) / eigest (1)); +%! printf('Actual condition number is %g\n', cond (A)); +%! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)'); +%! semilogy([0:iter], resvec,['o-g';'+-r']); +%! legend('absolute residual','absolute preconditioned residual'); +%!demo +%! +%! # Full output from pcg, including the eigenvalue estimates +%! # We use the 1-D Laplacian matrix for A, and cond(A) = O(N^2) +%! # and that's the reasone we need some preconditioner; here we take +%! # a very simple and not powerful Jacobi preconditioner, +%! # which is the diagonal of A +%! +%! N = 100; +%! A = zeros (N, N); +%! for i=1 : N - 1 # form 1-D Laplacian matrix +%! A (i:i+1, i:i+1) = [2 -1; -1 2]; +%! endfor +%! b = rand (N, 1); X = A \ b; #X is the true solution +%! maxit = 80; +%! printf('System condition number is %g\n', cond (A)); +%! # No preconditioner: the convergence is very slow! +%! +%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit); +%! printf('System condition number estimate is %g\n', eigest(2) / eigest(1)); +%! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)'); +%! semilogy([0:iter], resvec(:,1), 'o-g'); +%! legend('NO preconditioning: absolute residual'); +%! +%! pause(1); +%! # Test Jacobi preconditioner: it will not help much!!! +%! +%! M = diag (diag (A)); # Jacobi preconditioner +%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit, M); +%! printf('JACOBI preconditioned system condition number estimate is %g\n', eigest(2) / eigest(1)); +%! hold on; +%! semilogy([0:iter], resvec(:,1), 'o-r'); +%! legend('NO preconditioning: absolute residual', ... +%! 'JACOBI preconditioner: absolute residual'); +%! +%! pause(1); +%! # Test nonoverlapping block Jacobi preconditioner: it will help much! +%! +%! M = zeros (N, N); k = 4; +%! for i = 1 : k : N # form 1-D Laplacian matrix +%! M (i:i+k-1, i:i+k-1) = A (i:i+k-1, i:i+k-1); +%! endfor +%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit, M); +%! printf('BLOCK JACOBI preconditioned system condition number estimate is %g\n', eigest(2) / eigest(1)); +%! semilogy ([0:iter], resvec(:,1),'o-b'); +%! legend('NO preconditioning: absolute residual', ... +%! 'JACOBI preconditioner: absolute residual', ... +%! 'BLOCK JACOBI preconditioner: absolute residual'); +%! hold off; +%!test +%! +%! #solve small diagonal system +%! +%! N = 10; +%! A = diag ([1:N]); b = rand (N, 1); X = A \ b; #X is the true solution +%! [x, flag] = pcg (A, b, [], N+1); +%! assert(norm (x - X) / norm (X), 0, 1e-10); +%! assert(flag, 0); +%! +%!test +%! +%! #solve small indefinite diagonal system +%! #despite A is indefinite, the iteration continues and converges +%! #indefiniteness of A is detected +%! +%! N = 10; +%! A = diag([1:N] .* (-ones(1, N) .^ 2)); b = rand (N, 1); X = A \ b; #X is the true solution +%! [x, flag] = pcg (A, b, [], N+1); +%! assert(norm (x - X) / norm (X), 0, 1e-10); +%! assert(flag, 3); +%! +%!test +%! +%! #solve tridiagonal system, do not converge in default 20 iterations +%! +%! N = 100; +%! A = zeros (N, N); +%! for i = 1 : N - 1 # form 1-D Laplacian matrix +%! A (i:i+1, i:i+1) = [2 -1; -1 2]; +%! endfor +%! b = ones (N, 1); X = A \ b; #X is the true solution +%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, 1e-12); +%! assert(flag); +%! assert(relres > 1.0); +%! assert(iter, 20); #should perform max allowable default number of iterations +%! +%!test +%! +%! #solve tridiagonal system with 'prefect' preconditioner +%! #converges in one iteration, so the eigest does not work +%! #and issues a warning +%! +%! N = 100; +%! A = zeros (N, N); +%! for i = 1 : N - 1 # form 1-D Laplacian matrix +%! A (i:i+1, i:i+1) = [2 -1; -1 2]; +%! endfor +%! b = ones (N, 1); X = A \ b; #X is the true solution +%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], [], A, [], b); +%! assert(norm (x - X) / norm (X), 0, 1e-6); +%! assert(flag, 0); +%! assert(iter, 1); #should converge in one iteration +%! assert(isnan (eigest), isnan ([NaN, NaN])); +%!