X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?p=CreaPhase.git;a=blobdiff_plain;f=octave_packages%2Fsignal-1.1.3%2Fcheby2.m;fp=octave_packages%2Fsignal-1.1.3%2Fcheby2.m;h=4d1a96e6d3a53f178a5b9cfdb8b050eabcc3e830;hp=0000000000000000000000000000000000000000;hb=c880e8788dfc484bf23ce13fa2787f2c6bca4863;hpb=1705066eceaaea976f010f669ce8e972f3734b05 diff --git a/octave_packages/signal-1.1.3/cheby2.m b/octave_packages/signal-1.1.3/cheby2.m new file mode 100644 index 0000000..4d1a96e --- /dev/null +++ b/octave_packages/signal-1.1.3/cheby2.m @@ -0,0 +1,140 @@ +## Copyright (C) 1999 Paul Kienzle +## Copyright (C) 2003 Doug Stewart +## +## This program is free software; you can redistribute it and/or modify it under +## the terms of the GNU General Public License as published by the Free Software +## Foundation; either version 3 of the License, or (at your option) any later +## version. +## +## This program is distributed in the hope that it will be useful, but WITHOUT +## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more +## details. +## +## You should have received a copy of the GNU General Public License along with +## this program; if not, see . + +## Generate an Chebyshev type II filter with Rs dB of stop band attenuation. +## +## [b, a] = cheby2(n, Rs, Wc) +## low pass filter with cutoff pi*Wc radians +## +## [b, a] = cheby2(n, Rs, Wc, 'high') +## high pass filter with cutoff pi*Wc radians +## +## [b, a] = cheby2(n, Rs, [Wl, Wh]) +## band pass filter with edges pi*Wl and pi*Wh radians +## +## [b, a] = cheby2(n, Rs, [Wl, Wh], 'stop') +## band reject filter with edges pi*Wl and pi*Wh radians +## +## [z, p, g] = cheby2(...) +## return filter as zero-pole-gain rather than coefficients of the +## numerator and denominator polynomials. +## +## [...] = cheby2(...,'s') +## return a Laplace space filter, W can be larger than 1. +## +## [a,b,c,d] = cheby2(...) +## return state-space matrices +## +## References: +## +## Parks & Burrus (1987). Digital Filter Design. New York: +## John Wiley & Sons, Inc. + +function [a,b,c,d] = cheby2(n, Rs, W, varargin) + + if (nargin>5 || nargin<3) || (nargout>4 || nargout<2) + print_usage; + end + + ## interpret the input parameters + if (!(length(n)==1 && n == round(n) && n > 0)) + error ("cheby2: filter order n must be a positive integer"); + end + + + stop = 0; + digital = 1; + for i=1:length(varargin) + switch varargin{i} + case 's', digital = 0; + case 'z', digital = 1; + case { 'high', 'stop' }, stop = 1; + case { 'low', 'pass' }, stop = 0; + otherwise, error ("cheby2: expected [high|stop] or [s|z]"); + endswitch + endfor + + [r, c]=size(W); + if (!(length(W)<=2 && (r==1 || c==1))) + error ("cheby2: frequency must be given as w0 or [w0, w1]"); + elseif (!(length(W)==1 || length(W) == 2)) + error ("cheby2: only one filter band allowed"); + elseif (length(W)==2 && !(W(1) < W(2))) + error ("cheby2: first band edge must be smaller than second"); + endif + + if ( digital && !all(W >= 0 & W <= 1)) + error ("cheby2: critical frequencies must be in (0 1)"); + elseif ( !digital && !all(W >= 0 )) + error ("cheby2: critical frequencies must be in (0 inf)"); + endif + + if (Rs < 0) + error("cheby2: stopband attenuation must be positive decibels"); + end + + ## Prewarp to the band edges to s plane + if digital + T = 2; # sampling frequency of 2 Hz + W = 2/T*tan(pi*W/T); + endif + + ## Generate splane poles and zeros for the chebyshev type 2 filter + ## From: Stearns, SD; David, RA; (1988). Signal Processing Algorithms. + ## New Jersey: Prentice-Hall. + C = 1; # default cutoff frequency + lambda = 10^(Rs/20); + phi = log(lambda + sqrt(lambda^2-1))/n; + theta = pi*([1:n]-0.5)/n; + alpha = -sinh(phi)*sin(theta); + beta = cosh(phi)*cos(theta); + if (rem(n,2)) + ## drop theta==pi/2 since it results in a zero at infinity + zero = 1i*C./cos(theta([1:(n-1)/2, (n+3)/2:n])); + else + zero = 1i*C./cos(theta); + endif + pole = C./(alpha.^2+beta.^2).*(alpha-1i*beta); + + ## Compensate for amplitude at s=0 + ## Because of the vagaries of floating point computations, the + ## prod(pole)/prod(zero) sometimes comes out as negative and + ## with a small imaginary component even though analytically + ## the gain will always be positive, hence the abs(real(...)) + gain = abs(real(prod(pole)/prod(zero))); + + ## splane frequency transform + [zero, pole, gain] = sftrans(zero, pole, gain, W, stop); + + ## Use bilinear transform to convert poles to the z plane + if digital + [zero, pole, gain] = bilinear(zero, pole, gain, T); + endif + + ## convert to the correct output form + if nargout==2, + a = real(gain*poly(zero)); + b = real(poly(pole)); + elseif nargout==3, + a = zero; + b = pole; + c = gain; + else + ## output ss results + [a, b, c, d] = zp2ss (zero, pole, gain); + endif + +endfunction