X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?p=CreaPhase.git;a=blobdiff_plain;f=octave_packages%2Fspecfun-1.1.0%2Fellipke.m;fp=octave_packages%2Fspecfun-1.1.0%2Fellipke.m;h=2f1e73a09dfa30d9f33080de93540e532d4f77ef;hp=0000000000000000000000000000000000000000;hb=f5f7a74bd8a4900f0b797da6783be80e11a68d86;hpb=1705066eceaaea976f010f669ce8e972f3734b05 diff --git a/octave_packages/specfun-1.1.0/ellipke.m b/octave_packages/specfun-1.1.0/ellipke.m new file mode 100644 index 0000000..2f1e73a --- /dev/null +++ b/octave_packages/specfun-1.1.0/ellipke.m @@ -0,0 +1,125 @@ +## Copyright (C) 2001 David Billinghurst +## +## This program is free software; you can redistribute it and/or modify +## it under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 3 of the License, or +## (at your option) any later version. +## +## This program is distributed in the hope that it will be useful, +## but WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +## GNU General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with this program; If not, see . + +## -*- texinfo -*- +## @deftypefn {Function File} {[@var{k}, @var{e}] =} ellipke (@var{m}[,@var{tol}]) +## Compute complete elliptic integral of first K(@var{m}) and second E(@var{m}). +## +## @var{m} is either real array or scalar with 0 <= m <= 1 +## +## @var{tol} will be ignored (@sc{Matlab} uses this to allow faster, less +## accurate approximation) +## +## Ref: Abramowitz, Milton and Stegun, Irene A. Handbook of Mathematical +## Functions, Dover, 1965, Chapter 17. +## @seealso{ellipj} +## @end deftypefn + +## Author: David Billinghurst +## Created: 31 January 2001 +## 2001-02-01 Paul Kienzle +## * vectorized +## * included function name in error messages +## 2003-1-18 Jaakko Ruohio +## * extended for m < 0 + +function [k,e] = ellipke( m ) + + if (nargin < 1 || nargin > 2) + print_usage; + endif + + k = e = zeros(size(m)); + m = m(:); + if any(~isreal(m)) + error("ellipke must have real m"); + endif + if any(m>1) + error("ellipke must have m <= 1"); + endif + + Nmax = 16; + idx = find(m == 1); + if (!isempty(idx)) + k(idx) = Inf; + e(idx) = 1.0; + endif + + idx = find(m == -Inf); + if (!isempty(idx)) + k(idx) = 0.0; + e(idx) = Inf; + endif + + ## Arithmetic-Geometric Mean (AGM) algorithm + ## ( Abramowitz and Stegun, Section 17.6 ) + idx = find(m != 1 & m != -Inf); + if (!isempty(idx)) + idx_neg = find(m < 0 & m != -Inf); + mult_k = 1./sqrt(1-m(idx_neg)); + mult_e = sqrt(1-m(idx_neg)); + m(idx_neg) = -m(idx_neg)./(1-m(idx_neg)); + a = ones(length(idx),1); + b = sqrt(1.0-m(idx)); + c = sqrt(m(idx)); + f = 0.5; + sum = f*c.*c; + for n = 2:Nmax + t = (a+b)/2; + c = (a-b)/2; + b = sqrt(a.*b); + a = t; + f = f * 2; + sum = sum + f*c.*c; + if all(c./a < eps), break; endif + endfor + if n >= Nmax, error("ellipke: not enough workspace"); endif + k(idx) = 0.5*pi./a; + e(idx) = 0.5*pi.*(1.0-sum)./a; + k(idx_neg) = mult_k.*k(idx_neg); + e(idx_neg) = mult_e.*e(idx_neg); + endif + +endfunction + +%!test +%! ## Test complete elliptic functions of first and second kind +%! ## against "exact" solution from Mathematica 3.0 +%! ## +%! ## David Billinghurst +%! ## 1 February 2001 +%! m = [0.0; 0.01; 0.1; 0.5; 0.9; 0.99; 1.0 ]; +%! [k,e] = ellipke(m); +%! +%! # K(1.0) is really infinity - see below +%! K = [ +%! 1.5707963267948966192; +%! 1.5747455615173559527; +%! 1.6124413487202193982; +%! 1.8540746773013719184; +%! 2.5780921133481731882; +%! 3.6956373629898746778; +%! 0.0 ]; +%! E = [ +%! 1.5707963267948966192; +%! 1.5668619420216682912; +%! 1.5307576368977632025; +%! 1.3506438810476755025; +%! 1.1047747327040733261; +%! 1.0159935450252239356; +%! 1.0 ]; +%! if k(7)==Inf, k(7)=0.0; endif; +%! assert(K,k,8*eps); +%! assert(E,e,8*eps);