X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?p=CreaPhase.git;a=blobdiff_plain;f=octave_packages%2Ftsa-4.2.4%2Far_spa.m;fp=octave_packages%2Ftsa-4.2.4%2Far_spa.m;h=8756b6165ab0ab6357111bddfeedf57fb7e78bc6;hp=0000000000000000000000000000000000000000;hb=c880e8788dfc484bf23ce13fa2787f2c6bca4863;hpb=1705066eceaaea976f010f669ce8e972f3734b05 diff --git a/octave_packages/tsa-4.2.4/ar_spa.m b/octave_packages/tsa-4.2.4/ar_spa.m new file mode 100644 index 0000000..8756b61 --- /dev/null +++ b/octave_packages/tsa-4.2.4/ar_spa.m @@ -0,0 +1,104 @@ +function [w,A,B,R,P,F,ip] = ar_spa(ARP,nhz,E); +% AR_SPA decomposes an AR-spectrum into its compontents +% [w,A,B,R,P,F,ip] = ar_spa(AR,fs,E); +% +% INPUT: +% AR autoregressive parameters +% fs sampling rate, provide w and B in [Hz], if not given the result is in radians +% E noise level (mean square), gives A and F in units of E, if not given as relative amplitude +% +% OUTPUT +% w center frequency +% A Amplitude +% B bandwidth +% - less important output parameters - +% R residual +% P poles +% ip number of complex conjugate poles +% real(F) power, absolute values are obtained by multiplying with noise variance E(p+1) +% imag(F) assymetry, - " - +% +% All input and output parameters are organized in rows, one row +% corresponds to the parameters of one channel +% +% see also ACOVF ACORF DURLEV IDURLEV PARCOR YUWA +% +% REFERENCES: +% [1] Zetterberg L.H. (1969) Estimation of parameter for linear difference equation with application to EEG analysis. Math. Biosci., 5, 227-275. +% [2] Isaksson A. and Wennberg, A. (1975) Visual evaluation and computer analysis of the EEG - A comparison. Electroenceph. clin. Neurophysiol., 38: 79-86. +% [3] G. Florian and G. Pfurtscheller (1994) Autoregressive model based spectral analysis with application to EEG. IIG - Report Series, University of Technolgy Graz, Austria. + +% $Id: ar_spa.m 5090 2008-06-05 08:12:04Z schloegl $ +% Copyright (C) 1996-2003 by Alois Schloegl +% This is part of the TSA-toolbox see also: +% http://hci.tugraz.at/schloegl/matlab/tsa/ +% http://octave.sf.net/ +% +% This program is free software: you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation, either version 3 of the License, or +% (at your option) any later version. +% +% This program is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with this program. If not, see . + + +[NTR,pp]=size(ARP); + +R=zeros(size(ARP)); +P=zeros(size(ARP)); +w=zeros(size(ARP)); +A=zeros(size(ARP)); +B=zeros(size(ARP)); +F=zeros(size(ARP)); +F1 = F; +for k = 1:NTR, %if ~mod(k,100),k, end; + [r,p,tmp] = residue(1,[1 -ARP(k,:)]); + [tmp,idx] = sort(-abs(r)); + R(k,:) = r(idx)'; % Residual, + P(k,:) = p(idx)'; % Poles + %r(k,:)=roots([1 -ARP(k,:)])'; + w(k,:) = angle(p(idx)'); % center frequency (in [radians]) + A(k,:) = 1./abs(polyval([1 -ARP(k,:)],exp(i*w(k,:)))); % Amplitude + %A(k,:) = freqz(1,[1 -ARP(k,:)],w(k,:)); % Amplitude + %A2(k,:) = abs(r)'./abs(exp(i*w(k,:))-r'); % Amplitude + B(k,:) = -log(abs(p(idx)')); % Bandwidth + + if nargout < 6, + + elseif 0, + F(k,:) = (1+sign(imag(r(idx)')))./(polyval([-ARP(k,pp-1:-1:1).*(1:pp-1) pp],1./p(idx).').*polyval([-ARP(k,pp:-1:1) 1],p(idx).')); + + elseif 1; + a3 = polyval([-ARP(k,pp-1:-1:1).*(1:pp-1), pp],1./p(idx).'); + a = polyval([-ARP(k,pp:-1:1) 1],p(idx).'); + %F(k,:) = (1+(imag(P(k,:))~=0))./(a.*a3); + F(k,:) = (1+sign(imag(P(k,:))))./(a.*a3); + end; +end; + +A = A.*sqrt(E(:,ones(1,pp))/(2*pi*nhz)); +if nargin>1, + if size(nhz,1)==1, + nhz = nhz(ones(NTR,1),:); + end; + w = w.*nhz(:,ones(1,pp))/(2*pi); + B = B.*nhz(:,ones(1,pp))/(2*pi); +end; +if nargin>2, + F = F.*E(:,ones(1,pp)); + F1 = F1.*E(:,ones(1,pp)); +end; + +ip = sum(imag(P)~=0,2)/2; +return; + +np(:,1) = sum(imag(P')==0)'; % number of real poles +np(:,2) = pp-np(:,1); % number of imaginary poles + +