X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?p=CreaPhase.git;a=blobdiff_plain;f=octave_packages%2Ftsa-4.2.4%2Fdurlev.m;fp=octave_packages%2Ftsa-4.2.4%2Fdurlev.m;h=07f3f48d95ebc98d720f89ddaa7975dc6c81b9c9;hp=0000000000000000000000000000000000000000;hb=c880e8788dfc484bf23ce13fa2787f2c6bca4863;hpb=1705066eceaaea976f010f669ce8e972f3734b05 diff --git a/octave_packages/tsa-4.2.4/durlev.m b/octave_packages/tsa-4.2.4/durlev.m new file mode 100644 index 0000000..07f3f48 --- /dev/null +++ b/octave_packages/tsa-4.2.4/durlev.m @@ -0,0 +1,100 @@ +function [MX,res,arg3] = durlev(AutoCov); +% function [AR,RC,PE] = durlev(ACF); +% function [MX,PE] = durlev(ACF); +% estimates AR(p) model parameter by solving the +% Yule-Walker with the Durbin-Levinson recursion +% for multiple channels +% INPUT: +% ACF Autocorrelation function from lag=[0:p] +% +% OUTPUT +% AR autoregressive model parameter +% RC reflection coefficients (= -PARCOR coefficients) +% PE remaining error variance +% MX transformation matrix between ARP and RC (Attention: needs O(p^2) memory) +% AR(:,K) = MX(:,K*(K-1)/2+(1:K)); +% RC(:,K) = MX(:,(1:K).*(2:K+1)/2); +% +% All input and output parameters are organized in rows, one row +% corresponds to the parameters of one channel +% +% see also ACOVF ACORF AR2RC RC2AR LATTICE +% +% REFERENCES: +% Levinson N. (1947) "The Wiener RMS(root-mean-square) error criterion in filter design and prediction." J. Math. Phys., 25, pp.261-278. +% Durbin J. (1960) "The fitting of time series models." Rev. Int. Stat. Inst. vol 28., pp 233-244. +% P.J. Brockwell and R. A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991. +% S. Haykin "Adaptive Filter Theory" 3rd ed. Prentice Hall, 1996. +% M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. +% W.S. Wei "Time Series Analysis" Addison Wesley, 1990. + +% $Id: durlev.m 5090 2008-06-05 08:12:04Z schloegl $ +% Copyright (C) 1998-2002,2008 by Alois Schloegl +% +% This program is free software: you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation, either version 3 of the License, or +% (at your option) any later version. +% +% This program is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with this program. If not, see . + + +% Inititialization +[lr,lc]=size(AutoCov); + +res=[AutoCov(:,1), zeros(lr,lc-1)]; +d=zeros(lr,1); + +if nargout<3 % needs O(p^2) memory + MX=zeros(lr,lc*(lc-1)/2); + idx=0; + idx1=0; + % Durbin-Levinson Algorithm + for K=1:lc-1, + %idx=K*(K-1)/2; %see below + % for L=1:lr, d(L)=arp(L,1:K-1)*transpose(AutoCov(L,K:-1:2));end; % Matlab 4.x, Octave + % d=sum(MX(:,idx+(1:K-1)).*AutoCov(:,K:-1:2),2); % Matlab 5.x + MX(:,idx+K)=(AutoCov(:,K+1)-sum(MX(:,idx1+(1:K-1)).*AutoCov(:,K:-1:2),2))./res(:,K); + %rc(:,K)=arp(:,K); + %if K>1 %for compatibility with OCTAVE 2.0.13 + MX(:,idx+(1:K-1))=MX(:,idx1+(1:K-1))-MX(:,(idx+K)*ones(K-1,1)).*MX(:,idx1+(K-1:-1:1)); + %end; + % for L=1:lr, d(L)=MX(L,idx+(1:K))*(AutoCov(L,K+1:-1:2).');end; % Matlab 4.x, Octave + % d=sum(MX(:,idx+(1:K)).*AutoCov(:,K+1:-1:2),2); % Matlab 5.x + res(:,K+1) = res(:,K).*(1-abs(MX(:,idx+K)).^2); + idx1=idx; + idx=idx+K; + end; + %arp=MX(:,K*(K-1)/2+(1:K)); + %rc =MX(:,(1:K).*(2:K+1)/2); + +else % needs O(p) memory + + arp=zeros(lr,lc-1); + rc=zeros(lr,lc-1); + + % Durbin-Levinson Algorithm + for K=1:lc-1, + % for L=1:lr, d(L)=arp(L,1:K-1)*transpose(AutoCov(L,K:-1:2));end; % Matlab 4.x, Octave + % d=sum(arp(:,1:K-1).*AutoCov(:,K:-1:2),2); % Matlab 5.x + arp(:,K) = (AutoCov(:,K+1)-sum(arp(:,1:K-1).*AutoCov(:,K:-1:2),2))./res(:,K); % Yule-Walker + rc(:,K) = arp(:,K); + %if K>1 %for compatibility with OCTAVE 2.0.13 + arp(:,1:K-1)=arp(:,1:K-1)-arp(:,K*ones(K-1,1)).*arp(:,K-1:-1:1); + %end; + %for L=1:lr, d(L)=arp(L,1:K)*(AutoCov(L,K+1:-1:2).');end; % Matlab 4.x, Octave + % d=sum(arp(:,1:K).*AutoCov(:,K+1:-1:2),2); % Matlab 5.x + res(:,K+1) = res(:,K).*(1-abs(arp(:,K)).^2); + end; + + % assign output arguments + arg3=res; + res=rc; + MX=arp; +end; %if